# -*- coding: utf-8 -*-
"""
Created on Thu Apr 25 08:11:32 2019

@author: jiangshan
"""

import cv2
import numpy as np

dataSetDir = 'D:\\Workspace\\Spyder\\'
#filename = dataSetDir+'Mask_10228690_15.tif'
filename = dataSetDir+'Input_10228690_15.tiff'

# 加载彩图
img = cv2.imread(filename)
# 灰度图模式加载一副彩图
#img = cv2.imread(filename,0)
# 0 - 1 二值化
#Grayimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#ret, thresh = cv2.threshold(Grayimg, 0, 1,cv2.THRESH_BINARY)

# 显示图像
#cv2.imshow('image',img)
#cv2.waitKey(0) #cv2.waitKey() 是键盘绑定函数。如果没有键盘输入,返回值为-1,如果这个参数为0,将会无限期的等待键盘输入。
"""
cv2.destroyAllWindows() 删除任何建立的窗口。如果想删除特定的窗口可以使用cv2.destroyWindow(),在函数内输入想删除的窗口名。
"""
# 保存图像
cv2.imwrite('Input-test.png',img)
#cv2.imwrite('Target.png',thresh)

image = cv2.imread('Input-test.png',cv2.COLOR_RGB2GRAY)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gaus = cv2.GaussianBlur(gray,(3,3),0)#高斯模糊预处理
edges = cv2.Canny(gaus, 50, 150, apertureSize=3)#Canny算子
minLineLength = 300
maxLineGap = 10
lines = cv2.HoughLinesP(edges,1.0,np.pi/180,10,minLineLength,maxLineGap)#HoughLinesP直线特征提取
line = lines[:,0,:]#提取为二维
for x1, y1, x2, y2 in line:
cv2.line(image, (x1, y1), (x2, y2), (0,0,255), 2)#绘线
cv2.imshow('Detected houghline', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

#HoughCircles圆形特征提取
circles1 = cv2.HoughCircles(edges,cv2.HOUGH_GRADIENT,1,
100,param1=100,param2=30,minRadius=200,maxRadius=300)
circles = circles1[0,:,:]#提取为二维
circles = np.uint16(np.around(circles))#四舍五入,取整
for i in circles[:]:
cv2.circle(image,(i[0],i[1]),i[2],(255,0,0),5)#画圆
cv2.circle(image,(i[0],i[1]),2,(255,0,255),10)#画圆心
cv2.imshow('Detected houghCircles', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

image = cv2.imread('Input-test.png')
image = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)#将图像转化为灰度图像
cv2.imshow("Original",image)
cv2.waitKey()
#拉普拉斯边缘检测
lap = cv2.Laplacian(image,cv2.CV_64F)#拉普拉斯边缘检测
lap = np.uint8(np.absolute(lap))##对lap去绝对值
cv2.imshow("Laplacian",lap)
cv2.waitKey()

#Sobel边缘检测
sobelX = cv2.Sobel(image,cv2.CV_64F,1,0)#x方向的梯度
sobelY = cv2.Sobel(image,cv2.CV_64F,0,1)#y方向的梯度
sobelX = np.uint8(np.absolute(sobelX))#x方向梯度的绝对值
sobelY = np.uint8(np.absolute(sobelY))#y方向梯度的绝对值
sobelCombined = cv2.bitwise_or(sobelX,sobelY)#
cv2.imshow("Sobel X", sobelX)
cv2.waitKey()
cv2.imshow("Sobel Y", sobelY)
cv2.waitKey()
cv2.imshow("Sobel Combined", sobelCombined)
cv2.waitKey()

#Canny边缘检测
canny = cv2.Canny(image,30,150)
cv2.imshow("Canny",canny)
cv2.waitKey()

#Canny边缘提取
import cv2 as cv
def edge_demo(image):
blurred = cv.GaussianBlur(image, (3, 3), 0)
gray = cv.cvtColor(blurred, cv.COLOR_RGB2GRAY)
# xgrad = cv.Sobel(gray, cv.CV_16SC1, 1, 0) #x方向梯度
# ygrad = cv.Sobel(gray, cv.CV_16SC1, 0, 1) #y方向梯度
# edge_output = cv.Canny(xgrad, ygrad, 50, 150)
edge_output = cv.Canny(gray, 50, 150)
cv.imshow("Canny Edge", edge_output)
dst = cv.bitwise_and(image, image, mask= edge_output)
cv.imshow("Color Edge", dst)
src = cv.imread('Input-test.png')
cv.namedWindow('input_image', cv.WINDOW_NORMAL) #设置为WINDOW_NORMAL可以任意缩放
cv.imshow('input_image', src)
edge_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()

Python OpenCV 图像处理初级使用的更多相关文章

  1. Python+OpenCV图像处理(一)

    Python+OpenCV图像处理(一): 读取,写入和展示图片 调用摄像头拍照 调用摄像头录制视频 1. 读取.写入和展示图片 图像读入:cv2.imread() 使用函数cv2.imread() ...

  2. Python+OpenCV图像处理(一)——读取显示一张图片

    先在此处先声明,后面学习python+opencv图像处理时均参考这位博主的博文https://blog.csdn.net/u011321546/article/category/7495016/2? ...

  3. Python+OpenCV图像处理(十四)—— 直线检测

    简介: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.主要用来从图像中分离出具有某种相同特征的几何形状(如,直线 ...

  4. Python+OpenCV图像处理(九)—— 模板匹配

    百度百科:模板匹配是一种最原始.最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是一个匹配问题.它是图像处理中最基本.最常用的匹配方法.模板匹配具有自身的局限性, ...

  5. Python+OpenCV图像处理(八)—— 图像直方图

    直方图简介:图像的直方图是用来表现图像中亮度分布的直方图,给出的是图像中某个亮度或者某个范围亮度下共有几个像素.还不明白?就是统计一幅图某个亮度像素数量.比如对于灰度值12,一幅图里面有2000 个像 ...

  6. 如何让一张图片变成二值图像?python+opencv图像处理

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:张熹熹 PS:如有需要Python学习资料的小伙伴可以加点击下方链接自 ...

  7. Python+OpenCV图像处理(十六)—— 轮廓发现

    简介:轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终轮廓发现结果. 代码如下: import cv2 as cv import numpy as np def c ...

  8. Python+OpenCV图像处理(十五)—— 圆检测

    简介: 1.霍夫圆变换的基本原理和霍夫线变换原理类似,只是点对应的二维极径.极角空间被三维的圆心和半径空间取代.在标准霍夫圆变换中,原图像的边缘图像的任意点对应的经过这个点的所有可能圆在三维空间用圆心 ...

  9. Python+OpenCV图像处理(十三)—— Canny边缘检测

    简介: 1.Canny边缘检测算子是John F. Canny于 1986 年开发出来的一个多级边缘检测算法. 2.Canny 的目标是找到一个最优的边缘检测算法,最优边缘检测的含义是: 好的检测- ...

随机推荐

  1. 痞子衡嵌入式:一表全搜罗常见低功耗广域物联网协议(NB-IoT/eMTC/LoRa/SigFox...)

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是低功耗广域物联网协议. 上一篇痞子衡给大家搜罗了短距离无线通信协议,它是物联网的基础,但它的应用距离比较短,对于长距离的物联网应用鞭长莫 ...

  2. Ruby Enumerator的各种迭代

    Enumerator迭代 Mix-in Enumerator获得的迭代方法: each_cons: each_slice: each_with_index: with_index: each_with ...

  3. PHP中利用pcntl实现多进程(模拟多线程)实例(转)

    windows不支持pcntl的多线程(非Unix类系统不支持此模块),pcntl在很久很久之前就听过了,但是一直没有尝试着真正要用它. 这不,遇到socket问题了,看socket,遇到pcntl了 ...

  4. Java开发笔记(六)特殊数字的表达

    之前的文章提到,Java语言不但支持大众熟知的十进制数,也支持计算机特有的二进制数.八进制数和十六进制数.可是在给数值变量赋值的时候,等号右边的数字明显属于十进制,那究竟要如何书写其它进制的数字呢?为 ...

  5. Java消息中间件----ActiveMQ入门①

    一 首先到ActiveMQ下载安装包 Active官网地址http://activemq.apache.org/activemq-5150-release.html 如图所示,有两个下载的链接,我们下 ...

  6. 阿里巴巴(alibaba)系列_druid 数据库连接池_监控(一篇搞定)记录执行慢的sql语句

    参考帖子:http://www.cnblogs.com/han-1034683568/p/6730869.html Druid数据连接池简介 Druid是Java语言中最好的数据库连接池.Druid能 ...

  7. CentOS7 分布式安装 Hadoop 2.8

    1. 基本环境 1.1 操作系统 操作系统:CentOS7.3 1.2 三台虚拟机 172.20.20.100 master 172.20.20.101 slave1 172.20.20.102 sl ...

  8. 使用代码检查Dynamics 365中的备用键状态

    摘要: 微软动态CRM专家罗勇 ,回复304或者20190213可方便获取本文,同时可以在第一间得到我发布的最新博文信息,follow me!我的网站是 www.luoyong.me . 备用键(Al ...

  9. android常犯错误记录(二)

    检查 minSdkVersion什么的是不是和你依赖的包一样,它上面也有个小提示,显示本地的11,依赖的为15,那就改成15好了,重新build好了 ClassNotFoundException异常 ...

  10. ASP.NET MVC从空项目开始定制项目

    在上一篇net core的文章中已经讲过如何从零开始搭建WebSocket. 今天聊聊ASP.NET的文件结构,如何用自己的目录结构组织项目里的文件. 如果用Visual Studio(VS)向导或d ...