Python OpenCV 图像处理初级使用
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 25 08:11:32 2019
@author: jiangshan
"""
import cv2
import numpy as np
dataSetDir = 'D:\\Workspace\\Spyder\\'
#filename = dataSetDir+'Mask_10228690_15.tif'
filename = dataSetDir+'Input_10228690_15.tiff'
# 加载彩图
img = cv2.imread(filename)
# 灰度图模式加载一副彩图
#img = cv2.imread(filename,0)
# 0 - 1 二值化
#Grayimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#ret, thresh = cv2.threshold(Grayimg, 0, 1,cv2.THRESH_BINARY)
# 显示图像
#cv2.imshow('image',img)
#cv2.waitKey(0) #cv2.waitKey() 是键盘绑定函数。如果没有键盘输入,返回值为-1,如果这个参数为0,将会无限期的等待键盘输入。
"""
cv2.destroyAllWindows() 删除任何建立的窗口。如果想删除特定的窗口可以使用cv2.destroyWindow(),在函数内输入想删除的窗口名。
"""
# 保存图像
cv2.imwrite('Input-test.png',img)
#cv2.imwrite('Target.png',thresh)
image = cv2.imread('Input-test.png',cv2.COLOR_RGB2GRAY)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gaus = cv2.GaussianBlur(gray,(3,3),0)#高斯模糊预处理
edges = cv2.Canny(gaus, 50, 150, apertureSize=3)#Canny算子
minLineLength = 300
maxLineGap = 10
lines = cv2.HoughLinesP(edges,1.0,np.pi/180,10,minLineLength,maxLineGap)#HoughLinesP直线特征提取
line = lines[:,0,:]#提取为二维
for x1, y1, x2, y2 in line:
cv2.line(image, (x1, y1), (x2, y2), (0,0,255), 2)#绘线
cv2.imshow('Detected houghline', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
#HoughCircles圆形特征提取
circles1 = cv2.HoughCircles(edges,cv2.HOUGH_GRADIENT,1,
100,param1=100,param2=30,minRadius=200,maxRadius=300)
circles = circles1[0,:,:]#提取为二维
circles = np.uint16(np.around(circles))#四舍五入,取整
for i in circles[:]:
cv2.circle(image,(i[0],i[1]),i[2],(255,0,0),5)#画圆
cv2.circle(image,(i[0],i[1]),2,(255,0,255),10)#画圆心
cv2.imshow('Detected houghCircles', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
image = cv2.imread('Input-test.png')
image = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)#将图像转化为灰度图像
cv2.imshow("Original",image)
cv2.waitKey()
#拉普拉斯边缘检测
lap = cv2.Laplacian(image,cv2.CV_64F)#拉普拉斯边缘检测
lap = np.uint8(np.absolute(lap))##对lap去绝对值
cv2.imshow("Laplacian",lap)
cv2.waitKey()
#Sobel边缘检测
sobelX = cv2.Sobel(image,cv2.CV_64F,1,0)#x方向的梯度
sobelY = cv2.Sobel(image,cv2.CV_64F,0,1)#y方向的梯度
sobelX = np.uint8(np.absolute(sobelX))#x方向梯度的绝对值
sobelY = np.uint8(np.absolute(sobelY))#y方向梯度的绝对值
sobelCombined = cv2.bitwise_or(sobelX,sobelY)#
cv2.imshow("Sobel X", sobelX)
cv2.waitKey()
cv2.imshow("Sobel Y", sobelY)
cv2.waitKey()
cv2.imshow("Sobel Combined", sobelCombined)
cv2.waitKey()
#Canny边缘检测
canny = cv2.Canny(image,30,150)
cv2.imshow("Canny",canny)
cv2.waitKey()
#Canny边缘提取
import cv2 as cv
def edge_demo(image):
blurred = cv.GaussianBlur(image, (3, 3), 0)
gray = cv.cvtColor(blurred, cv.COLOR_RGB2GRAY)
# xgrad = cv.Sobel(gray, cv.CV_16SC1, 1, 0) #x方向梯度
# ygrad = cv.Sobel(gray, cv.CV_16SC1, 0, 1) #y方向梯度
# edge_output = cv.Canny(xgrad, ygrad, 50, 150)
edge_output = cv.Canny(gray, 50, 150)
cv.imshow("Canny Edge", edge_output)
dst = cv.bitwise_and(image, image, mask= edge_output)
cv.imshow("Color Edge", dst)
src = cv.imread('Input-test.png')
cv.namedWindow('input_image', cv.WINDOW_NORMAL) #设置为WINDOW_NORMAL可以任意缩放
cv.imshow('input_image', src)
edge_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()
Python OpenCV 图像处理初级使用的更多相关文章
- Python+OpenCV图像处理(一)
Python+OpenCV图像处理(一): 读取,写入和展示图片 调用摄像头拍照 调用摄像头录制视频 1. 读取.写入和展示图片 图像读入:cv2.imread() 使用函数cv2.imread() ...
- Python+OpenCV图像处理(一)——读取显示一张图片
先在此处先声明,后面学习python+opencv图像处理时均参考这位博主的博文https://blog.csdn.net/u011321546/article/category/7495016/2? ...
- Python+OpenCV图像处理(十四)—— 直线检测
简介: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.主要用来从图像中分离出具有某种相同特征的几何形状(如,直线 ...
- Python+OpenCV图像处理(九)—— 模板匹配
百度百科:模板匹配是一种最原始.最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是一个匹配问题.它是图像处理中最基本.最常用的匹配方法.模板匹配具有自身的局限性, ...
- Python+OpenCV图像处理(八)—— 图像直方图
直方图简介:图像的直方图是用来表现图像中亮度分布的直方图,给出的是图像中某个亮度或者某个范围亮度下共有几个像素.还不明白?就是统计一幅图某个亮度像素数量.比如对于灰度值12,一幅图里面有2000 个像 ...
- 如何让一张图片变成二值图像?python+opencv图像处理
前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:张熹熹 PS:如有需要Python学习资料的小伙伴可以加点击下方链接自 ...
- Python+OpenCV图像处理(十六)—— 轮廓发现
简介:轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终轮廓发现结果. 代码如下: import cv2 as cv import numpy as np def c ...
- Python+OpenCV图像处理(十五)—— 圆检测
简介: 1.霍夫圆变换的基本原理和霍夫线变换原理类似,只是点对应的二维极径.极角空间被三维的圆心和半径空间取代.在标准霍夫圆变换中,原图像的边缘图像的任意点对应的经过这个点的所有可能圆在三维空间用圆心 ...
- Python+OpenCV图像处理(十三)—— Canny边缘检测
简介: 1.Canny边缘检测算子是John F. Canny于 1986 年开发出来的一个多级边缘检测算法. 2.Canny 的目标是找到一个最优的边缘检测算法,最优边缘检测的含义是: 好的检测- ...
随机推荐
- ThreadPoolExecutor系列三——ThreadPoolExecutor 源码解析
ThreadPoolExecutor 源码解析 本文系作者原创,转载请注明出处:http://www.cnblogs.com/further-further-further/p/7681826.htm ...
- 记一次查询超时的解决方案The timeout period elapsed......
问题描述 在数据库中执行查询语句,大约1秒钟查询出来,在C#中用ado进行连接查询,一直等待很久未查出结果,最后抛出查询超时异常. 异常内容如下: Execution Timeout Expired. ...
- shell初识
今天写blog才发现以前还有没写起的,我的天,我是睡着了么... 1,什么是shell? shell是unix/Linux系统的一个用充当内核与用户之间的接口的软件,它读取用户的输入命令,发送给内核让 ...
- 做了2个多月的设计和编码,我梳理了Flutter动态化的方案对比及最佳实现
背景 在端上为了提升App的灵活性, 快速解决万变的业务需求,开发者们探索了多种解决方案,如PhoneGap ,React Native ,Weex等,但在Flutter生态还没有好的解决方案.未来闲 ...
- 互联网寒冬,阿里Ant Design还开坑,程序员该何去何从?
金山都成立三十年了,不得不感叹中国在这三十年中,互联网确实是一步一步的在改变人们生活的方方面面,随着国家的发展,一大批企业搭上了互联网这趟高速列车走过了这几十年的风风雨雨,当然也造就了一批批传统行业无 ...
- git第三节----git status与git diff
@ git status主要检索本地仓库的文件更新状态 @ git diff 主要是查看文件更新的具体内容 首先我们需要了解下文件状态类型,分为以追踪文件和未追踪文件 已追踪文件:在仓库之前的版本快照 ...
- django中url路由配置及渲染方式
今天我们学习如何配置url.如何传参.如何命名.以及渲染的方式,内容大致有以下几个方面. 创建视图函数并访问 创建app django中url规则 捕获参数 路径转换器 正则表达式 额外参数 渲染方式 ...
- Perl信号处理
本文关于Perl信号处理的内容主体来自于<Pro Perl>的第21章. 信号处理 操作系统可以通过信号(signal)处理机制来实现一些功能:程序注册好待监视的信号处理机制,在程序运行过 ...
- 第62章 EntityFramework支持 - Identity Server 4 中文文档(v1.0.0)
为IdentityServer中的配置和操作数据扩展点提供了基于EntityFramework的实现.EntityFramework的使用允许任何EF支持的数据库与此库一起使用. 这个库的仓库位于这里 ...
- 使用NOPI写入Excel基础代码
using NPOI.XSSF.UserModel; using System; using System.Collections.Generic; using System.IO; using Sy ...