numpy处理时间序列
1. 字符串转成numpy.datetime64格式
import numpy as np
#将字符串转换成numpy格式时间
#注意个位前补0,如1月写成01
nd=np.datetime64('2019-01-10')
nd
np.datetime64('1901')
2. numpy.datetime64转成字符串格式
#转化为字符串
np.datetime_as_string(nd)
3. np.arange生成时间序列
#生成时间序列
#默认以日为间隔,算头不算尾
np.arange('2019-01-05','2019-01-10',dtype='datetime64')
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
#设定随机种子(括号里的数字只是起标记作用)
np.random.seed(1)
#h:小时,m:分,s:秒,ms微秒
#生成分时
x=np.arange('2019-01-10T00:00:00','2019-01-10T23:00:00',dtype='datetime64[m]')
#生成标准正态分布时间序列
y=np.random.standard_normal(len(x))
#设置图片大小
fig=plt.figure(figsize=(12,6))
#将x的np.datetime转换为datetime.datetime
plt.plot(x.astype(datetime),y)
fig.autofmt_xdate()
plt.title('模拟23小时内每分钟正态分布的随机数分布')
# 将右边 上边的两条边颜色设置为空 其实就相当于抹掉这两条边
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
plt.show()
参考文献:
numpy处理时间序列的更多相关文章
- TensorFlow实现时间序列预测
常常会碰到各种各样时间序列预测问题,如商场人流量的预测.商品价格的预测.股价的预测,等等.TensorFlow新引入了一个TensorFlow Time Series库(以下简称为TFTS),它可以帮 ...
- Python Numpy,Pandas基础笔记
Numpy Numpy是python的一个库.支持维度数组与矩阵计算并提供大量的数学函数库. arr = np.array([[1.2,1.3,1.4],[1.5,1.6,1.7]])#创建ndarr ...
- NumPy的详细教程
原文 http://blog.csdn.net/lsjseu/article/details/20359201 主题 NumPy 先决条件 在阅读这个教程之前,你多少需要知道点python.如果你想 ...
- Python中利用LSTM模型进行时间序列预测分析
时间序列模型 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺 ...
- 《利用python进行数据分析》读书笔记--第十章 时间序列(三)
7.时间序列绘图 pandas时间序列的绘图功能在日期格式化方面比matplotlib原生的要好. #-*- coding:utf-8 -*- import numpy as np import pa ...
- numpy&pandas补充常用示例
Numpy [数组切片] In [115]: a = np.arange(12).reshape((3,4)) In [116]: a Out[116]: array([[ 0, 1, 2, 3], ...
- Pandas系列(六)-时间序列详解
内容目录 1. 基础概述 2. 转换时间戳 3. 生成时间戳范围 4. DatetimeIndex 5. DateOffset对象 6. 与时间序列相关的方法 6.1 移动 6.2 频率转换 6.3 ...
- pandas处理时间序列(3):重采样与频率转换
五.重采样与频率转换 1. resample方法 rng = pd.date_range('1/3/2019',periods=1000,freq='D') rng 2. 降采样 (1)resampl ...
- 如何用python将一个时间序列转化成有监督学习
机器学习可以被用于时间序列预测. 在机器学习能使用之前,时间序列预测需要被重新转化成有监督学习.将一个序列组合成成对的输入输出序列. 在这篇教程中,你会发现如何通过使用机器学习算法将单变量和多变量的时 ...
随机推荐
- xlrd模块;xlwt模块使用,smtp发送邮件
先安装 pip3 install xlwt pip3 install xlrd import xlwt, xlrd from xlrd.book import Book from xlrd.sheet ...
- newinstance和new的区别
newinstance将对象创建分为两个步骤,解耦的手段,先调用class.forName加载类,然后再去实例化它 new可以不用加载,不是一定 newinstance作为依赖注入 https://b ...
- java实现哈夫曼编码
java实现哈夫曼编码 哈夫曼树 既然是学习哈夫曼编码,我们首先需要知道什么是哈夫曼树:给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫 ...
- 初探React Hooks & SSR改造
Hooks React v16.8 发布了 Hooks,其主要是解决跨组件.组件复用的状态管理问题. 在 class 中组件的状态封装在对象中,然后通过单向数据流来组织组件间的状态交互.这种模式下,跨 ...
- 转摘: MySQL详解--锁
原文 http://blog.csdn.net/xifeijian/article/details/20313977 InnoDB锁问题 InnoDB与MyISAM的最大不同有两点:一是支持事务(TR ...
- 4、初识python
今天开始进行python的系统学习开始写随笔希望对看到的人有所帮助,写的不对的地方可以指出来大家共同进步. 预习: 1.安装python2和python3,实现多版本共存 2.用python语言编写代 ...
- HTML5_canvas 画布
<canvas></canvas> 画布 <canvas id="my_canvas" width="400" height=&q ...
- [LeetCode] Max Increase to Keep City Skyline 保持城市天际线的最大增高
In a 2 dimensional array grid, each value grid[i][j] represents the height of a building located the ...
- jdbc的入门学习
一.JDBC相关概念介绍 1.1.数据库驱动 这里的驱动的概念和平时听到的那种驱动的概念是一样的,比如平时购买的声卡,网卡直接插到计算机上面是不能用的,必须要安装相应的驱动程序之后才能够使用声卡和网卡 ...
- EF Oracle TNS 连接
<oracle.manageddataaccess.client> <version number="*"> <settings> <se ...