POJ 1655

【题目链接】POJ 1655

【题目类型】求树的重心

&题意:

定义平衡数为去掉一个点其最大子树的结点个数,求给定树的最小平衡数和对应要删的点。其实就是求树的重心,找到一个点,其所有的子树中最大的子树的节点数最少,那么这个点就是这棵树的重心,删除重心后,剩余的子树更加平衡正好满足题意

&题解:

那么怎么求呢?我们可以求每个顶点的子树,把子树节点最多的赋为b,那么每个顶点都有一个b,最小的b就是树的重心,一颗树只有1个或2个重心。

【时间复杂度】\(O(n)\)

&代码:

#include <map>
#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <set>
#include <queue>
#include <cstring>
#include <algorithm>
using namespace std;
#define cle(a,v) memset(a,(v),sizeof(a))
#define fo(i,a,b) for(int i=(a);i<=(b);i++)
#define fd(i,a,b) for(int i=(a);i>=(b);i--)
#define ll long long
const int maxn = 2e4 + 7;
struct Edge {
int v, next;
} edges[maxn * 2];
int tot, head[maxn];
void addedge(int u, int v) {
edges[tot].v = v;
edges[tot].next = head[u];
head[u] = tot++;
}
int n, dp[maxn], an1, an2;
void dfs(int u, int fa) {
int b = 0;
for (int i = head[u]; ~i; i = edges[i].next) {
int v = edges[i].v;
if (v == fa)continue;
dfs(v, u);
dp[u] += dp[v] + 1;
b = max(b, dp[v] + 1);
}
b = max(b, n - dp[u] - 1);
if (an1 > b || an1 == b && an2 > u) {
an1 = b;
an2 = u;
}
}
int main() {
freopen("1.in", "r", stdin);
int t;
scanf("%d", &t);
while (t--) {
tot = 0;
an1 = 1 << 30, an2 = 1 << 30;
cle(head, -1); cle(dp, 0);
scanf("%d", &n);
for (int i = 0; i < n - 1; i++) {
int u, v;
scanf("%d%d", &u, &v);
addedge(u, v);
addedge(v, u);
}
dfs(1, -1);
// fo(i, 1, n) {
// printf("[%d]=%d ", i, dp[i]);
// } printf("\n");
printf("%d %d\n", an2, an1);
}
return 0;
}

POJ 1655 求树的重心的更多相关文章

  1. poj 1655 找树的重心

    树形DP 求树的重心,即选择一个结点删去,使得分出的 若干棵树的结点数 的最大值最小 #include<map> #include<set> #include<cmath ...

  2. Balancing Act POJ - 1655 (树的重心)

    Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the t ...

  3. poj3107 求树的重心(&& poj1655 同样求树的重心)

    题目链接:http://poj.org/problem?id=3107 求树的重心,所谓树的重心就是:在无根树转换为有根树的过程中,去掉根节点之后,剩下的树的最大结点最小,该点即为重心. 剩下的数的 ...

  4. poj 1655 Balancing Act 求树的重心【树形dp】

    poj 1655 Balancing Act 题意:求树的重心且编号数最小 一棵树的重心是指一个结点u,去掉它后剩下的子树结点数最少. (图片来源: PatrickZhou 感谢博主) 看上面的图就好 ...

  5. POJ 1655 Balancing Act (求树的重心)

    求树的重心,直接当模板吧.先看POJ题目就知道重心什么意思了... 重心:删除该节点后最大连通块的节点数目最小 #include<cstdio> #include<cstring&g ...

  6. POJ 1655 Balancing Act(求树的重心--树形DP)

    题意:求树的重心的编号以及重心删除后得到的最大子树的节点个数size,假设size同样就选取编号最小的. 思路:随便选一个点把无根图转化成有根图.dfs一遍就可以dp出答案 //1348K 125MS ...

  7. POJ 1655 Balancing Act&&POJ 3107 Godfather(树的重心)

    树的重心的定义是: 一个点的所有子树中节点数最大的子树节点数最小. 这句话可能说起来比较绕,但是其实想想他的字面意思也就是找到最平衡的那个点. POJ 1655 题目大意: 直接给你一棵树,让你求树的 ...

  8. 求树的重心(POJ1655)

    题意:给出一颗n(n<=2000)个结点的树,删除其中的一个结点,会形成一棵树,或者多棵树,定义删除任意一个结点的平衡度为最大的那棵树的结点个数,问删除哪个结点后,可以让平衡度最小,即求树的重心 ...

  9. 洛谷P1395 会议(CODEVS.3029.设置位置)(求树的重心)

    To 洛谷.1395 会议 To CODEVS.3029 设置位置 题目描述 有一个村庄居住着n个村民,有n-1条路径使得这n个村民的家联通,每条路径的长度都为1.现在村长希望在某个村民家中召开一场会 ...

随机推荐

  1. k个一组翻转链表

    给出一个链表,每 k 个节点一组进行翻转,并返回翻转后的链表. k 是一个正整数,它的值小于或等于链表的长度.如果节点总数不是 k 的整数倍,那么将最后剩余节点保持原有顺序. 示例 : 给定这个链表: ...

  2. 【Java】 剑指offer(11) 矩阵中的路径

    本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字 ...

  3. Petrozavodsk Summer-2017. Moscow IPT Contest

    A. A Place For My Head 留坑. B. New Divide 从高位到低位贪心,当这一位是$0$时,要尽量取$1$,维护高维后缀最小值进行判断即可. 时间复杂度$O((n+a)\l ...

  4. mobile_竖向滑屏

    竖向滑屏 元素最终事件 = 元素初始位置 + 手指滑动距离 移动端,"手指按下","手指移动" 两个事件即可(且不需要嵌套),有需要时才使用 "手指离 ...

  5. react_app 项目开发 (5)_前后端分离_后台管理系统_开始

    项目描述 技术选型 react API 接口 接口文档,url,请求方式,参数类型, 根据文档描述的方法,进行 postman 测试,看是否能够得到理想的结果 collections - 创建文件取项 ...

  6. [LeetCode] Design Circular Deque 设计环形双向队列

    Design your implementation of the circular double-ended queue (deque). Your implementation should su ...

  7. 根据屏幕自适应宽度:@media

    @media screen and (min-width: 1490px){ .w1224{ width: 1400px !important; }}@media screen and (max-wi ...

  8. Dev_GridView获取所选行的句柄

    这是官方帮助文档上的一句话: 此示例演示如何获取所选行,然后更改其字段值. GetSelectedRows方法检索所选行的句柄. 由于行句柄反映了在View中显示行的顺序,因此修改单行可 能会影响其他 ...

  9. Java语言基础之数组

    引出数组和数组的定义 为什么要使用数组: 问题一: 声明变量时,每一个单独的变量都要对应一个变量名,但现在要处理一组相同类型的数据时,如要表示班上100个人的年纪,绝不能定义100个变量来表示每一个人 ...

  10. Unity进阶----AssetBundle_02(加载依赖关系及网络资源)(2018/10/31)

    网络资源加载: string path ="file://"+ Application.streamingAssetsPath + "\\windows\\123&quo ...