主要是用函数torch.nn.utils.rnn.PackedSequence()和torch.nn.utils.rnn.pack_padded_sequence()以及torch.nn.utils.rnn.pad_packed_sequence()来进行的,分别来看看这三个函数的用法。

1、torch.nn.utils.rnn.PackedSequence()

NOTE: 这个类的实例不能手动创建。它们只能被 pack_padded_sequence() 实例化。

PackedSequence对象包括:

  • 一个data对象:一个torch.Variable(令牌的总数,每个令牌的维度),在这个简单的例子中有五个令牌序列(用整数表示):(18,1)
  • 一个batch_sizes对象:每个时间步长的令牌数列表,在这个例子中为:[6,5,2,4,1]

用pack_padded_sequence函数来构造这个对象非常的简单:

如何构造一个PackedSequence对象(batch_first = True)

PackedSequence对象有一个很不错的特性,就是我们无需对序列解包(这一步操作非常慢)即可直接在PackedSequence数据变量上执行许多操作。特别是我们可以对令牌执行任何操作(即对令牌的顺序/上下文不敏感)。当然,我们也可以使用接受PackedSequence作为输入的任何一个pyTorch模块(pyTorch 0.2)。

2、torch.nn.utils.rnn.pack_padded_sequence()

这里的pack,理解成压紧比较好。 将一个 填充过的变长序列 压紧。(填充时候,会有冗余,所以压紧一下)

输入的形状可以是(T×B×* )。T是最长序列长度,Bbatch size*代表任意维度(可以是0)。如果batch_first=True的话,那么相应的 input size 就是 (B×T×*)

Variable中保存的序列,应该按序列长度的长短排序,长的在前,短的在后。即input[:,0]代表的是最长的序列,input[:, B-1]保存的是最短的序列。

NOTE: 只要是维度大于等于2的input都可以作为这个函数的参数。你可以用它来打包labels,然后用RNN的输出和打包后的labels来计算loss。通过PackedSequence对象的.data属性可以获取 Variable

参数说明:

  • input (Variable) – 变长序列 被填充后的 batch

  • lengths (list[int]) – Variable 中 每个序列的长度。

  • batch_first (bool, optional) – 如果是True,input的形状应该是B*T*size

返回值:

一个PackedSequence 对象。

3、torch.nn.utils.rnn.pad_packed_sequence()

填充packed_sequence

上面提到的函数的功能是将一个填充后的变长序列压紧。 这个操作和pack_padded_sequence()是相反的。把压紧的序列再填充回来。

返回的Varaible的值的sizeT×B×*, T 是最长序列的长度,B 是 batch_size,如果 batch_first=True,那么返回值是B×T×*

Batch中的元素将会以它们长度的逆序排列。

参数说明:

  • sequence (PackedSequence) – 将要被填充的 batch

  • batch_first (bool, optional) – 如果为True,返回的数据的格式为 B×T×*

返回值: 一个tuple,包含被填充后的序列,和batch中序列的长度列表。

例子:

import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.nn import utils as nn_utils
batch_size = 2
max_length = 3
hidden_size = 2
n_layers =1 tensor_in = torch.FloatTensor([[1, 2, 3], [1, 0, 0]]).resize_(2,3,1)
tensor_in = Variable( tensor_in ) #[batch, seq, feature], [2, 3, 1]
seq_lengths = [3,1] # list of integers holding information about the batch size at each sequence step # pack it
pack = nn_utils.rnn.pack_padded_sequence(tensor_in, seq_lengths, batch_first=True) # initialize
rnn = nn.RNN(1, hidden_size, n_layers, batch_first=True)
h0 = Variable(torch.randn(n_layers, batch_size, hidden_size)) #forward
out, _ = rnn(pack, h0) # unpack
unpacked = nn_utils.rnn.pad_packed_sequence(out)
print('111',unpacked)

输出:

111 (Variable containing:
(0 ,.,.) =
0.5406 0.3584
-0.1403 0.0308 (1 ,.,.) =
-0.6855 -0.9307
0.0000 0.0000
[torch.FloatTensor of size 2x2x2]
, [2, 1])

pytorch对可变长度序列的处理的更多相关文章

  1. 使用PyTorch建立你的第一个文本分类模型

    概述 学习如何使用PyTorch执行文本分类 理解解决文本分类时所涉及的要点 学习使用包填充(Pack Padding)特性 介绍 我总是使用最先进的架构来在一些比赛提交模型结果.得益于PyTorch ...

  2. PyTorch专栏(六): 混合前端的seq2seq模型部署

    欢迎关注磐创博客资源汇总站: http://docs.panchuang.net/ 欢迎关注PyTorch官方中文教程站: http://pytorch.panchuang.net/ 专栏目录: 第一 ...

  3. 库、教程、论文实现,这是一份超全的PyTorch资源列表(Github 2.2K星)

    项目地址:https://github.com/bharathgs/Awesome-pytorch-list 列表结构: NLP 与语音处理 计算机视觉 概率/生成库 其他库 教程与示例 论文实现 P ...

  4. 混合前端seq2seq模型部署

    混合前端seq2seq模型部署 本文介绍,如何将seq2seq模型转换为PyTorch可用的前端混合Torch脚本.要转换的模型来自于聊天机器人教程Chatbot tutorial. 1.混合前端 在 ...

  5. [源码解析] NVIDIA HugeCTR,GPU版本参数服务器---(3)

    [源码解析] NVIDIA HugeCTR,GPU版本参数服务器---(3) 目录 [源码解析] NVIDIA HugeCTR,GPU版本参数服务器---(3) 0x00 摘要 0x01 回顾 0x0 ...

  6. http2协议翻译(转)

    超文本传输协议版本 2 IETF HTTP2草案(draft-ietf-httpbis-http2-13) 摘要 本规范描述了一种优化的超文本传输协议(HTTP).HTTP/2通过引进报头字段压缩以及 ...

  7. 【HTTP 2】HTTP/2 协议概述(HTTP/2 Protocol Overview)

    前情提要 在上一篇文章<[HTTP 2.0] 简介(Introduction)>中,我们简单介绍了 HTTP 2. 在本篇文章中,我们将会了解到 HTTP 2 协议概述部分的内容. HTT ...

  8. 论文翻译_Tracking The Untrackable_Learning To Track Multiple Cues with Long-Term Dependencies_IEEE2017

    Tracking The Untrackable: Learning to Track Multiple Cues with Long-Term Dependencies 跟踪不可跟踪:学习跟踪具有长 ...

  9. SCALA-基础知识学习(一)

    概述 本人开始学习scala的时候,是在使用和开发spark程序的时候,在此为了整理.记录和分享scala的基础知识,我写这篇关于scala的基础知识,希望与广大读者共同学习沟通进步.如果有些代码比较 ...

随机推荐

  1. Django学习笔记之表单验证

    表单概述 HTML中的表单 单纯从前端的html来说,表单是用来提交数据给服务器的,不管后台的服务器用的是Django还是PHP语言还是其他语言.只要把input标签放在form标签中,然后再添加一个 ...

  2. 爬虫基础(三)-----selenium模块应用程序

    摆脱穷人思维 <三> :  培养"目标导向"的思维:  好项目永远比钱少,只要目标正确,钱总有办法解决. 一 selenium模块 什么是selenium?seleni ...

  3. 如何给CentOS 安装Vmware Tools

    1.打开电脑中的VMware  Workstation 软件,并启动安装了CentOS6.9系统的虚拟机         2.点击“”other”,在Username中输入root,在Password ...

  4. Shell命令-文件及目录操作之file、md5sum

    文件及目录操作 - file.md5sum 1. file:显示文件的类型 file命令的功能说明 用于辨识文件类型.通过 file 指令,我们得以辨识该文件的类型. file命令的语法格式 file ...

  5. golang函数

    一.函数语法 func 函数名(形参列表) (返回值列表){ ...... return 返回值 } 例如: package main import "fmt" func test ...

  6. Lodop简短问答客户反馈篇 及排查步骤 及注册相关

    A.http下打印图片正常,https下打印图片是××.(有的客户端可以,有的不可以)重置ie浏览器试试.客户反馈:(和ie浏览器的设置有关)intenet选项--高级里,我调整为和能打印出图片的电脑 ...

  7. vue 自定义指令的使用案例

    参考资料: 1. vue 自定义指令: 2. vue 自定义指令实现 v-loading: v-loading,是 element-ui 组件库中的一个用于数据加载过程中的过渡动画指令,项目中也很少需 ...

  8. Netty 5 io.netty.util.IllegalReferenceCountException 异常

    异常信息 io.netty.util.IllegalReferenceCountException: refCnt: 0, decrement: 1 原因 handler 继承了 SimpleChan ...

  9. Windows Server 2016激活方法+密钥+遇到的问题及解决办法(摘抄)

    Windows Server 2016激活方法+密钥+遇到的问题及解决办法 2018年08月30日 13:47:34 Brozer 阅读数:28667   这两天公司准备部署Revit Server ...

  10. java querydsl使用

    1  POM文件 <?xml version="1.0"?> <project xsi:schemaLocation="http://maven.apa ...