主要是用函数torch.nn.utils.rnn.PackedSequence()和torch.nn.utils.rnn.pack_padded_sequence()以及torch.nn.utils.rnn.pad_packed_sequence()来进行的,分别来看看这三个函数的用法。

1、torch.nn.utils.rnn.PackedSequence()

NOTE: 这个类的实例不能手动创建。它们只能被 pack_padded_sequence() 实例化。

PackedSequence对象包括:

  • 一个data对象:一个torch.Variable(令牌的总数,每个令牌的维度),在这个简单的例子中有五个令牌序列(用整数表示):(18,1)
  • 一个batch_sizes对象:每个时间步长的令牌数列表,在这个例子中为:[6,5,2,4,1]

用pack_padded_sequence函数来构造这个对象非常的简单:

如何构造一个PackedSequence对象(batch_first = True)

PackedSequence对象有一个很不错的特性,就是我们无需对序列解包(这一步操作非常慢)即可直接在PackedSequence数据变量上执行许多操作。特别是我们可以对令牌执行任何操作(即对令牌的顺序/上下文不敏感)。当然,我们也可以使用接受PackedSequence作为输入的任何一个pyTorch模块(pyTorch 0.2)。

2、torch.nn.utils.rnn.pack_padded_sequence()

这里的pack,理解成压紧比较好。 将一个 填充过的变长序列 压紧。(填充时候,会有冗余,所以压紧一下)

输入的形状可以是(T×B×* )。T是最长序列长度,Bbatch size*代表任意维度(可以是0)。如果batch_first=True的话,那么相应的 input size 就是 (B×T×*)

Variable中保存的序列,应该按序列长度的长短排序,长的在前,短的在后。即input[:,0]代表的是最长的序列,input[:, B-1]保存的是最短的序列。

NOTE: 只要是维度大于等于2的input都可以作为这个函数的参数。你可以用它来打包labels,然后用RNN的输出和打包后的labels来计算loss。通过PackedSequence对象的.data属性可以获取 Variable

参数说明:

  • input (Variable) – 变长序列 被填充后的 batch

  • lengths (list[int]) – Variable 中 每个序列的长度。

  • batch_first (bool, optional) – 如果是True,input的形状应该是B*T*size

返回值:

一个PackedSequence 对象。

3、torch.nn.utils.rnn.pad_packed_sequence()

填充packed_sequence

上面提到的函数的功能是将一个填充后的变长序列压紧。 这个操作和pack_padded_sequence()是相反的。把压紧的序列再填充回来。

返回的Varaible的值的sizeT×B×*, T 是最长序列的长度,B 是 batch_size,如果 batch_first=True,那么返回值是B×T×*

Batch中的元素将会以它们长度的逆序排列。

参数说明:

  • sequence (PackedSequence) – 将要被填充的 batch

  • batch_first (bool, optional) – 如果为True,返回的数据的格式为 B×T×*

返回值: 一个tuple,包含被填充后的序列,和batch中序列的长度列表。

例子:

import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.nn import utils as nn_utils
batch_size = 2
max_length = 3
hidden_size = 2
n_layers =1 tensor_in = torch.FloatTensor([[1, 2, 3], [1, 0, 0]]).resize_(2,3,1)
tensor_in = Variable( tensor_in ) #[batch, seq, feature], [2, 3, 1]
seq_lengths = [3,1] # list of integers holding information about the batch size at each sequence step # pack it
pack = nn_utils.rnn.pack_padded_sequence(tensor_in, seq_lengths, batch_first=True) # initialize
rnn = nn.RNN(1, hidden_size, n_layers, batch_first=True)
h0 = Variable(torch.randn(n_layers, batch_size, hidden_size)) #forward
out, _ = rnn(pack, h0) # unpack
unpacked = nn_utils.rnn.pad_packed_sequence(out)
print('111',unpacked)

输出:

111 (Variable containing:
(0 ,.,.) =
0.5406 0.3584
-0.1403 0.0308 (1 ,.,.) =
-0.6855 -0.9307
0.0000 0.0000
[torch.FloatTensor of size 2x2x2]
, [2, 1])

pytorch对可变长度序列的处理的更多相关文章

  1. 使用PyTorch建立你的第一个文本分类模型

    概述 学习如何使用PyTorch执行文本分类 理解解决文本分类时所涉及的要点 学习使用包填充(Pack Padding)特性 介绍 我总是使用最先进的架构来在一些比赛提交模型结果.得益于PyTorch ...

  2. PyTorch专栏(六): 混合前端的seq2seq模型部署

    欢迎关注磐创博客资源汇总站: http://docs.panchuang.net/ 欢迎关注PyTorch官方中文教程站: http://pytorch.panchuang.net/ 专栏目录: 第一 ...

  3. 库、教程、论文实现,这是一份超全的PyTorch资源列表(Github 2.2K星)

    项目地址:https://github.com/bharathgs/Awesome-pytorch-list 列表结构: NLP 与语音处理 计算机视觉 概率/生成库 其他库 教程与示例 论文实现 P ...

  4. 混合前端seq2seq模型部署

    混合前端seq2seq模型部署 本文介绍,如何将seq2seq模型转换为PyTorch可用的前端混合Torch脚本.要转换的模型来自于聊天机器人教程Chatbot tutorial. 1.混合前端 在 ...

  5. [源码解析] NVIDIA HugeCTR,GPU版本参数服务器---(3)

    [源码解析] NVIDIA HugeCTR,GPU版本参数服务器---(3) 目录 [源码解析] NVIDIA HugeCTR,GPU版本参数服务器---(3) 0x00 摘要 0x01 回顾 0x0 ...

  6. http2协议翻译(转)

    超文本传输协议版本 2 IETF HTTP2草案(draft-ietf-httpbis-http2-13) 摘要 本规范描述了一种优化的超文本传输协议(HTTP).HTTP/2通过引进报头字段压缩以及 ...

  7. 【HTTP 2】HTTP/2 协议概述(HTTP/2 Protocol Overview)

    前情提要 在上一篇文章<[HTTP 2.0] 简介(Introduction)>中,我们简单介绍了 HTTP 2. 在本篇文章中,我们将会了解到 HTTP 2 协议概述部分的内容. HTT ...

  8. 论文翻译_Tracking The Untrackable_Learning To Track Multiple Cues with Long-Term Dependencies_IEEE2017

    Tracking The Untrackable: Learning to Track Multiple Cues with Long-Term Dependencies 跟踪不可跟踪:学习跟踪具有长 ...

  9. SCALA-基础知识学习(一)

    概述 本人开始学习scala的时候,是在使用和开发spark程序的时候,在此为了整理.记录和分享scala的基础知识,我写这篇关于scala的基础知识,希望与广大读者共同学习沟通进步.如果有些代码比较 ...

随机推荐

  1. 洛谷 P1091 合唱队形

    \[传送门在这里呀\] 题目描述 \(N\)位同学站成一排,音乐老师要请其中的\((N-K)\)位同学出列,使得剩下的\(K\)位同学排成合唱队形. 合唱队形是指这样的一种队形:设K位同学从左到右依次 ...

  2. go笔记-熔断器

    参考: https://studygolang.com/articles/13254 区别:(限速器 VS 熔断器) 限速器(limiter)可以限制接口自身被调的频率 熔断器可监控所调用的服务的失败 ...

  3. 模型加速[tensorflow&tensorrt]

    在tensorflow1.8之后的版本中,tensorflow.contrib部分都有tensorrt的组件,该组件存在的意义在于,你可以读取pb文件,并调用tensorrt的方法进行subgraph ...

  4. L2-2 小字辈 (25 分)

    本题给定一个庞大家族的家谱,要请你给出最小一辈的名单. 输入格式: 输入在第一行给出家族人口总数 N(不超过 100 000 的正整数) —— 简单起见,我们把家族成员从 1 到 N 编号.随后第二行 ...

  5. JS--编码规范

    1. 请修复给定的 js 代码中,函数定义存在的问题 function functions(flag) { if (flag) { function getValue() { return 'a'; ...

  6. ExaWizards 2019 English D - Modulo Operations(DP)

    Time Limit: 2 sec / Memory Limit: 1024 MB Score : 600600 points Problem Statement Snuke has a blackb ...

  7. Kubernetes — 作业副本与水平扩展

    Deployment 看似简单,但实际上,它实现了 Kubernetes 项目中一个非常重要的功能:Pod 的“水平扩展 / 收缩”(horizontal scaling out/in). 这个功能, ...

  8. vue mock自己总结

    cli安装mock模块 npm   install  mockjs 创建mock文件夹 配置及创建文件 当后端写好真实接口以后,我们只需删掉创建的mock.js文件和在main.js中导入假数据的那行 ...

  9. vue报错如log,如果其他项目运行没问题,很有可能是代码错误 加externals报错

  10. 为什么String被设计为不可变?是否真的不可变?

    1 对象不可变定义 不可变对象是指对象的状态在被初始化以后,在整个对象的生命周期内,不可改变. 2 如何不可变 通常情况下,在java中通过以下步骤实现不可变 对于属性不提供设值方法 所有的属性定义为 ...