Problem

Codeforces-671D

题意概要:给定一棵 \(n\) 点有根树与 \(m\) 条链,链有费用,保证链端点之间为祖先关系,问至少花费多少费用才能覆盖整棵树(\(n-1\) 条边)

\(n,m\leq 3\times 10^5\)

Solution

有一个线性规划的对偶式子(是从这篇里学习的):

\(\max\{c^Tx|Ax\leq b\}=\min\{b^Ty|A^Ty\geq c\}\)

(其中 \(x,y,b,c\) 为列向量,\(A\) 为一个矩阵)

其理解可以参照下面这个模型:

第一个式子中:工厂主有 \(n\) 个产品,其中 \(A\) 为这些产品所需原材料的数量,\(x\) 为产品生产数量,\(c\) 为生产一件产品的收益,\(b\) 为原材料数量

第二个式子中:喻同学有 \(m\) 种原材料,其中 \(A^T\) 上述矩阵的转置,\(b,c\) 同理,\(y\) 表示给原材料的定价

第一个式子中的现实意义:工厂主在使用现有原材料的情况下,生产产品所得最大收益

第二个式子中的现实意义:喻同学给工厂主的原材料定价,使得工厂主无论如何都无法获得任何收益,在此情况下尽量使得工厂主支出最少

由于工厂主要最大化自己的收益,而在喻同学的操作下,工厂主已经无法获益,要最大化自己收益(可能为负)只能尽量减少支出

由现实意义可以得出该式子,但严谨证明暂略


回到这题,由于求最小的花费不容易求,使用上述对偶关系进行转换:

原题套用第二个式子:

\(b^T\) : 每条链的费用

\(y\) : 每条链是否选择

\(A^T\) : 每条边是否被每条链覆盖

\(c\) : 每条边至少覆盖一次

求费用最小

对偶成第一个式子:

\(c^T\) : 每条边被覆盖一次

\(x\) : 给每条边构造的权值

\(A\) : 每条链是否覆盖每个点

\(b\) : 每条链的费用

求构造值之和最大

所以原题转化成:给定一棵树,要求给每条边构造一个权值,使得对于每条链而言,链上边权值之和不大于当前链的权值。由于原题保证链一定有祖先关系,可以左偏树贪心

Code

/*
Problem Source : cf-671D
Author : oier_hzy
Time : Nov 19 2019
*/
#include <bits/stdc++.h>
using namespace std; inline void read(int&x){
char c11=getchar();x=0;while(!isdigit(c11))c11=getchar();
while(isdigit(c11))x=x*10+c11-'0',c11=getchar();
} const int N = 301000;
struct Edge{int v,w,nxt;} a[N*3];
int head[N], Head[N];
int tag[N], cov[N];
int dep[N], len[N];
int rt[N], ls[N], rs[N];
int n,m,_,tot; long long Ans; inline void add(int x,int y,int z,int*arr){a[++_].v = y, a[_].w = z, a[_].nxt = arr[x], arr[x] = _;} struct node{int w, ps;}t[N]; inline void put_tag(int x,int y) {t[x].w += y, tag[x] += y;}
inline void down_tag(int x){
int&v = tag[x];
if(!v) return ;
if(ls[x]) put_tag(ls[x], v);
if(rs[x]) put_tag(rs[x], v);
v = 0;
} int merge(int x,int y){
if(!x or !y) return x | y;
down_tag(x), down_tag(y);
if(t[x].w > t[y].w) swap(x,y);
rs[x] = merge(rs[x], y);
if(len[ls[x]] < len[rs[x]]) swap(ls[x], rs[x]);
len[x] = len[rs[x]] + 1;
return x;
} void dfs(int x,int las){
for(int i=head[x];i;i=a[i].nxt)
if(a[i].v != las){
dep[a[i].v] = dep[x] + 1;
dfs(a[i].v,x);
rt[x] = merge(rt[x], rt[a[i].v]);
cov[x] += cov[a[i].v];
}
if(x != 1 and !cov[x]) puts("-1"), exit(0);
for(int i=Head[x];i;i=a[i].nxt){
t[++tot] = (node) {a[i].w, a[i].v};
rt[x] = merge(rt[x], tot);
}
while(rt[x] and dep[t[rt[x]].ps] >= dep[x]) {
down_tag(rt[x]);
rt[x] = merge(ls[rt[x]], rs[rt[x]]);
}
Ans += t[rt[x]].w, put_tag(rt[x], -t[rt[x]].w);
} int main(){
read(n), read(m);
int x,y,z;
for(int i=1;i<n;++i){
read(x), read(y);
add(x,y,0,head);
add(y,x,0,head);
}
while(m--){
read(x), read(y), read(z);
++cov[x], --cov[y];
add(x,y,z,Head);
}
dfs(1,0);
printf("%lld\n",Ans);
return 0;
}

题解-Codeforces671D Roads in Yusland的更多相关文章

  1. [Codeforces671D]Roads in Yusland

    [Codeforces671D]Roads in Yusland Tags:题解 题意 luogu 给定以1为根的一棵树,有\(m\)条直上直下的有代价的链,求选一些链把所有边覆盖的最小代价.若无解输 ...

  2. Codeforces 671 D. Roads in Yusland

    题目描述 Mayor of Yusland just won the lottery and decided to spent money on something good for town. Fo ...

  3. 【CF671D】Roads in Yusland(贪心,左偏树)

    [CF671D]Roads in Yusland(贪心,左偏树) 题面 洛谷 CF 题解 无解的情况随便怎么搞搞提前处理掉. 通过严密(大雾)地推导后,发现问题可以转化成这个问题: 给定一棵树,每条边 ...

  4. 【CF617D】Roads in Yusland

    [CF617D]Roads in Yusland 题面 蒯的洛谷的 题解 我们现在已经转化好了题目了,戳这里 那么我们考虑怎么求这个东西,我们先判断一下是否所有的边都能被覆盖,不行的话输出\(-1\) ...

  5. 【CodeForces】671 D. Roads in Yusland

    [题目]D. Roads in Yusland [题意]给定n个点的树,m条从下往上的链,每条链代价ci,求最少代价使得链覆盖所有边.n,m<=3*10^5,ci<=10^9,time=4 ...

  6. codesforces 671D Roads in Yusland

    Mayor of Yusland just won the lottery and decided to spent money on something good for town. For exa ...

  7. 题解-CodeForces835F Roads in the Kingdom

    Problem CodeForces-835F 题意:求基环树删去环上任意一边后直径最小值,直径定义为所有点对最近距离的最大值 Solution 首先明确删去环上一点是不会影响树内直径的,所以应当先把 ...

  8. Codeforces 671D Roads in Yusland [树形DP,线段树合并]

    洛谷 Codeforces 这是一个非正解,被正解暴踩,但它还是过了. 思路 首先很容易想到DP. 设\(dp_{x,i}\)表示\(x\)子树全部被覆盖,而且向上恰好延伸到\(dep=i\)的位置, ...

  9. codeforces 671D Roads in Yusland & hdu 5293 Tree chain problem

    dp dp优化 dfs序 线段树 算是一个套路.可以处理在树上取链的问题.

随机推荐

  1. 【刷题】Git工作流-相关知识点

    参考资料:[学习总结]Git学习-GIT工作流-千峰教育(来自B站) 1-Git工作流 GitFlow流五大分支: 主干分支 热修复分支 预发布分支 开发分支 功能分支 GitFlow 工作流定义了一 ...

  2. MySQL函数--(1)

    /*函数与存储过程的区别1.存储过程:可以有0个返回值,可以有多个返回值函数:有且仅有一个返回值*/ #创建语法create FUNCTION 函数名(参数列表) return 返回类型BEGIN函数 ...

  3. To B Vs To C

    谈谈 To B 业务的难点https://tangjie.me/blog/259.html

  4. Excel提取字符串示例

    1.提取两个字符中间的字

  5. P1462 通往奥格瑞玛的道路 (二分+最短路)

    题目 P1462 通往奥格瑞玛的道路 给定\(n\)个点\(m\)条边,每个点上都有点权\(f[i]\),每条边上有边权,找一条道路,使边权和小于给定的数\(b\),并使最大点权最小. 解析 二分一下 ...

  6. FixedThreadPool吞掉了异常

    为了方便遍描述问题,如下是简化后的 public class RunException { public static void main(String[] args) { ExecutorServi ...

  7. 「雅礼集训 2017 Day5」珠宝

    题目描述 Miranda 准备去市里最有名的珠宝展览会,展览会有可以购买珠宝,但可惜的是只能现金支付,Miranda 十分纠结究竟要带多少的现金,假如现金带多了,就会比较危险,假如带少了,看到想买的右 ...

  8. UOJ 7 NOI2014 购票

    题意:给一棵树计算一下各个点在距离限制下以一定的费用公式通过不停地到祖先最后到达一号点的最小花费. 第一种做法:线段树维护带修凸壳.显然的,这个公式计算是p*x+q 所以肯定和斜率有关系.然后这题的d ...

  9. ORM表相关操作

    一般操作 看专业的官网文档,做专业的程序员! 必知必会13条 > all(): 查询所有结果 > filter(**kwargs): 它包含了与所给筛选条件相匹配的对象 > get( ...

  10. mysql的服务器构成

    什么是实例 这里的实例不是类产生的实例对象,而是Linux系统下的一种机制 1.MySQL的后台进程+线程+预分配的内存结构. 2.MySQL在启动的过程中会启动后台守护进程,并生成工作线程,预分配内 ...