spark Transformations算子
在java中,RDD分为javaRDDs和javaPairRDDs。下面分两大类来进行。
都必须要进行的一步。
SparkConf conf = new SparkConf().setMaster("local").setAppName("test");
JavaSparkContext sc = new JavaSparkContext(conf);
一。javaRDDs
String[] ayys = {"a","b","c"};
List<String> strings = Arrays.asList(ayys); JavaRDD<String> rdd1 = sc.parallelize(strings);
strings.add("d");
JavaRDD<String> rdd2 = sc.parallelize(strings); JavaRDD<Tuple2<String, Integer>> parallelize = sc.parallelize(Arrays.asList(
new Tuple2<String, Integer>("asd", 11),
new Tuple2<String, Integer>("asd", 11),
new Tuple2<String, Integer>("asd", 11)
)); rdd1.map(new Function<String, String>() {
public String call(String s) throws Exception {
return s.replace("a","qqq");
}
}).foreach(new VoidFunction<String>() {
public void call(String s) throws Exception {
System.out.println(s);
}
}); List<String> a = rdd1.filter(new Function<String, Boolean>() {
public Boolean call(String s) throws Exception {
return s.contains("a");
}
}).collect(); System.out.println(a); JavaRDD<String> rdd22 = rdd1.flatMap(new FlatMapFunction<String, String>() {
public Iterable<String> call(String s) throws Exception {
return Arrays.asList(s.split(" "));
}
}); JavaPairRDD<String, Integer> rdd4 = rdd2.mapToPair(new PairFunction<String, String, Integer>() {
public Tuple2<String, Integer> call(String s) throws Exception {
return new Tuple2<String, Integer>(s, 1);
}
}); JavaRDD<String> rdd11 = rdd2.mapPartitions(new FlatMapFunction<Iterator<String>, String>() {
public Iterable<String> call(Iterator<String> stringIterator) throws Exception {
ArrayList<String> strings = new ArrayList<String>();
while (stringIterator.hasNext()){
strings.add(stringIterator.next());
}
return strings;
}
}); JavaRDD<String> stringJavaRDD = rdd1.mapPartitionsWithIndex(new Function2<Integer, Iterator<String>, Iterator<String>>() {
public Iterator<String> call(Integer integer, Iterator<String> stringIterator) throws Exception {
ArrayList<String> strings = new ArrayList<String>();
while (stringIterator.hasNext()){
strings.add(stringIterator.next());
}
return strings.iterator();
}
},false); JavaRDD<String> sample = rdd1.sample(false, 0.3); JavaRDD<String> union = rdd1.union(rdd2); JavaRDD<String> intersection = rdd1.intersection(rdd2); JavaRDD<String> distinct = rdd1.distinct();
二。JavaPairRDDs.
JavaPairRDD<String, Integer> rdd1 = sc.parallelizePairs(Arrays.asList(
new Tuple2<String, Integer>("asd", 111),
new Tuple2<String, Integer>("asd", 111),
new Tuple2<String, Integer>("asd", 111)
)); JavaPairRDD<String, Integer> rdd2 = sc.parallelizePairs(Arrays.asList(
new Tuple2<String, Integer>("sdfsd", 222),
new Tuple2<String, Integer>("sdfsd", 222),
new Tuple2<String, Integer>("sdfsd", 222)
)); JavaPairRDD<String, Iterable<Integer>> stringIterableJavaPairRDD = rdd1.groupByKey(); JavaPairRDD<String, Integer> rdd = rdd1.reduceByKey(new Function2<Integer, Integer, Integer>() {
public Integer call(Integer integer, Integer integer2) throws Exception {
return integer + integer2;
}
}); JavaPairRDD<String, Integer> rdd3 = rdd1.aggregateByKey(0, new Function2<Integer, Integer, Integer>() {
public Integer call(Integer integer, Integer integer2) throws Exception {
return max(integer,integer2);
}
}, new Function2<Integer, Integer, Integer>() {
public Integer call(Integer integer, Integer integer2) throws Exception {
return integer + integer2;
}
}); JavaPairRDD<String, Integer> rdd111 = rdd1.sortByKey(); JavaPairRDD<String, Tuple2<Integer, Integer>> join = rdd1.join(rdd2);
JavaPairRDD<String, Tuple2<Integer, Optional<Integer>>> stringTuple2JavaPairRDD = rdd1.leftOuterJoin(rdd2);
JavaPairRDD<String, Tuple2<Optional<Integer>, Integer>> stringTuple2JavaPairRDD1 = rdd1.rightOuterJoin(rdd2);
JavaPairRDD<String, Tuple2<Optional<Integer>, Optional<Integer>>> stringTuple2JavaPairRDD2 = rdd1.fullOuterJoin(rdd2); JavaPairRDD<String, Tuple2<Iterable<Integer>, Iterable<Integer>>> cogroup = rdd1.cogroup(rdd2); JavaPairRDD<String, Integer> coalesce = rdd1.coalesce(3, false); JavaPairRDD<String, Integer> repartition = rdd1.repartition(3); JavaPairRDD<String, Integer> rdd5 = rdd1.repartitionAndSortWithinPartitions(new HashPartitioner(2)); JavaPairRDD<Tuple2<String, Integer>, Tuple2<String, Integer>> cartesian = rdd1.cartesian(rdd2); JavaRDD<String> pipe = rdd1.pipe("");
zip:
JavaPairRDD<Tuple2<String, Integer>, Tuple2<String, Integer>> zip = rdd1.zip(rdd2); JavaPairRDD<Tuple2<String, Integer>, Long> tuple2LongJavaPairRDD = rdd1.zipWithIndex();
最后都要加上
sc.stop();
repartitionAndSortWithinPartitions算子详解
spark Transformations算子的更多相关文章
- 【Spark篇】---Spark中transformations算子二
一.前述 今天继续整理几个Transformation算子如下: mapPartitionWithIndex repartition coalesce groupByKey zip zipWithIn ...
- Spark RDD概念学习系列之Spark的算子的分类(十一)
Spark的算子的分类 从大方向来说,Spark 算子大致可以分为以下两类: 1)Transformation 变换/转换算子:这种变换并不触发提交作业,完成作业中间过程处理. Transformat ...
- Spark操作算子本质-RDD的容错
Spark操作算子本质-RDD的容错spark模式1.standalone master 资源调度 worker2.yarn resourcemanager 资源调度 nodemanager在一个集群 ...
- Spark RDD概念学习系列之Spark的算子的作用(十四)
Spark的算子的作用 首先,关于spark算子的分类,详细见 http://www.cnblogs.com/zlslch/p/5723857.html 1.Transformation 变换/转换算 ...
- [大数据之Spark]——Transformations转换入门经典实例
Spark相比于Mapreduce的一大优势就是提供了很多的方法,可以直接使用:另一个优势就是执行速度快,这要得益于DAG的调度,想要理解这个调度规则,还要理解函数之间的依赖关系. 本篇就着重描述下S ...
- Spark RDD算子介绍
Spark学习笔记总结 01. Spark基础 1. 介绍 Spark可以用于批处理.交互式查询(Spark SQL).实时流处理(Spark Streaming).机器学习(Spark MLlib) ...
- 列举spark所有算子
一.RDD概述 1.什么是RDD RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可 ...
- Spark Transformations介绍
背景 本文介绍是基于Spark 1.3源码 如何创建RDD? RDD可以从普通数组创建出来,也可以从文件系统或者HDFS中的文件创建出来. 举例:从普通数组创建RDD,里面包含了1到9这9个数字,它们 ...
- Spark常用算子-KeyValue数据类型的算子
package com.test; import java.util.ArrayList; import java.util.List; import java.util.Map; import or ...
随机推荐
- [转载:Q1mi]Bootstrap和基于Bootstrap的登录验证示例
转载自:Q1mi Bootstrap介绍 Bootstrap是Twitter开源的基于HTML.CSS.JavaScript的前端框架. 它是为实现快速开发Web应用程序而设计的一套前端工具包. 它支 ...
- luogu P1250 种树
我来总结一下最常用的两种办法 1.贪心 2.差分约束 那么我们先来讲,贪心版<种树> 大家可能知道有一个题和这个类似,那个是钉钉子而这个是种树 我们可以借用钉钉子的思路来想,首先这个是让你 ...
- 开篇python
测试代码 #!/usr/bin/env python # -*- coding: UTF-8 -*- import os import sys print(os.getcwd) print(sys.v ...
- Apache服务器配置与管理
一.Apache服务器的目录和文件 1.WEB站点目录 /var/www Apache站点文件的目录 /var/www/html 存放WEB站点的WEB文件 /var/www/cgi-bin CGI程 ...
- yyb博客的几道神仙题
该比赛链接 T5 题意: 给你一个\(n\times n\)的网格,开始有\(m\)个被涂成黑色的格子,如果存在三个格子\((x,y)\),\((y,z)\),\((z,x)\)满足\((x,y)\) ...
- 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP
做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...
- oracle 查询数据库的各种命令
以下查询都是使用plsql查询oracle 11g 1.查询数据库版本信息 select * from v$version; 2.查询数据库优化模式 select name, value from v ...
- Quartz.net 3.x使用总结(二)——Db持久化和集群
上一篇简单介绍了Quartz.net的概念和基本用法,这一篇记录一下Quartz.net通过数据库持久化Trigger和Jobs等数据,并简单配置Quartz.net的集群. 1.JobStore介绍 ...
- SSH框架之Hibernate《一》
hibernate的基础入门 一:hibernate和ORM的概念部分 1.1hibernate概述: Hibernate框架是当今主流的Java持久层框架之一 ...
- docker学习-----docker可视化portainer
docker的可视化操作界面portainer 1.创建一个挂载区 docker volume create portainer_data 2.安装( docker run -d - ...