[BZOJ 3110] [ZJOI 2013] K大数查询
Description
有 \(N\) 个位置,\(M\) 个操作。操作有两种,每次操作如果是:
- 1 a b c:表示在第 \(a\) 个位置到第 \(b\) 个位置,每个位置加入一个数 \(c\);
- 2 a b c:表示询问从第 \(a\) 个位置到第 \(b\) 个位置,第 \(c\) 大的数是多少。
Input
第一行 \(N, M\);
接下来 \(M\) 行,每行形如 1 a b c 或 2 a b c。
Output
输出每个询问的结果。
Sample Input
2 5
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3
Sample Output
1
2
1
HINT
\(N,M\le50000\)
\(1\) 操作中 \(|c|\le N\)
\(2\) 操作中 \(|c|\le \text{maxlongint}\)
Solution
首先,操作一是给 \([a,b]\) 的每个位置插入一个数 \(c\),每个位置可以有多个数。(我一直以为是区间加QAQ。)
Solve(l, r, L, R) 表示第 \([L,R]\) 个询问可能的答案在区间 \([l,r]\) 中。每次把 \(c\le mid\) 的插入操作放到左边,把 \(c>mid\) 的放到右边;把答案在 \([l,mid]\) 的询问放到左边,把答案在 \([mid+1,r]\) 的询问放到右边。时间复杂度 \(O(n\log^2n)\)。
Code
#include <cstdio>
const int N = 50005;
typedef long long LL;
struct Node { int l, r, x, f; LL k; } a[N], b[N], c[N];
int ans[N], n, m, cnt; LL tag[N << 3], sum[N << 3];
int read() {
int x = 0, f = 1; char c = getchar();
while (c < '0' || c > '9') { if (c == '-') f = -1; c = getchar(); }
while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + (c ^ 48), c = getchar();
return x * f;
}
void pushdown(int cur, int l, int r) {
int mid = (l + r) >> 1;
tag[cur << 1] += tag[cur], tag[cur << 1 | 1] += tag[cur];
sum[cur << 1] += tag[cur] * (mid - l + 1), sum[cur << 1 | 1] += tag[cur] * (r - mid);
tag[cur] = 0;
}
void update(int cur, int l, int r, int L, int R, int x) {
if (L <= l && r <= R) { tag[cur] += x, sum[cur] += x * (r - l + 1); return; }
if (tag[cur]) pushdown(cur, l, r);
int mid = (l + r) >> 1;
if (L <= mid) update(cur << 1, l, mid, L, R, x);
if (mid < R) update(cur << 1 | 1, mid + 1, r, L, R, x);
sum[cur] = sum[cur << 1] + sum[cur << 1 | 1];
}
LL query(int cur, int l, int r, int L, int R) {
if (L <= l && r <= R) return sum[cur];
if (tag[cur]) pushdown(cur, l, r);
int mid = (l + r) >> 1; LL res = 0;
if (L <= mid) res = query(cur << 1, l, mid, L, R);
if (mid < R) res += query(cur << 1 | 1, mid + 1, r, L, R);
return res;
}
void solve(int l, int r, int L, int R) {
if (l > r || L > R) return;
if (l == r) {
for (int i = L; i <= R; ++i) if (a[i].f) ans[a[i].x] = n - l + 1;
return;
}
int mid = (l + r) >> 1, p = 0, q = 0;
for (int i = L; i <= R; ++i)
if (a[i].f) {
LL tmp = query(1, 1, n, a[i].l, a[i].r);
if (tmp >= a[i].k) b[++p] = a[i];
else a[i].k -= tmp, c[++q] = a[i];
} else {
if (a[i].k <= mid) update(1, 1, n, a[i].l, a[i].r, 1), b[++p] = a[i];
else c[++q] = a[i];
}
for (int i = 1; i <= p; ++i) if (!b[i].f) update(1, 1, n, b[i].l, b[i].r, -1);
for (int i = 1; i <= p; ++i) a[L + i - 1] = b[i];
for (int i = 1; i <= q; ++i) a[L + p + i - 1] = c[i];
solve(l, mid, L, L + p - 1), solve(mid + 1, r, L + p, R);
}
int main() {
n = read(), m = read();
for (int i = 1; i <= m; ++i) {
int op = read(), x = read(), y = read(); LL z; scanf("%lld", &z);
if (op == 1) a[i] = (Node){x, y, i, 0, n - z + 1};
else a[i] = (Node){x, y, ++cnt, 1, z};
}
solve(1, n, 1, m);
for (int i = 1; i <= cnt; ++i) printf("%d\n", ans[i]);
return 0;
}
[BZOJ 3110] [ZJOI 2013] K大数查询的更多相关文章
- BZOJ 3110 ZJOI 2013 K大数查询 树套树(权值线段树套区间线段树)
题目大意:有一些位置.这些位置上能够放若干个数字. 如今有两种操作. 1.在区间l到r上加入一个数字x 2.求出l到r上的第k大的数字是什么 思路:这样的题一看就是树套树,关键是怎么套,怎么写.(话说 ...
- [BZOJ 3110] [luogu 3332] [ZJOI 2013]k大数查询(权值线段树套线段树)
[BZOJ 3110] [luogu 3332] [ZJOI 2013]k大数查询(权值线段树套线段树) 题面 原题面有点歧义,不过从样例可以看出来真正的意思 有n个位置,每个位置可以看做一个集合. ...
- 数据结构(树套树):ZJOI 2013 K大数查询
有几个点卡常数…… 发现若第一维为位置,第二维为大小,那么修改时第一维修改区间,查询时第一维查询区间,必须挂标记.而这种情况下标记很抽象,而且Push_down不是O(1)的,并不可行. 那要怎么做呢 ...
- BZOJ 3110:[Zjoi2013]K大数查询(整体二分)
http://www.lydsy.com/JudgeOnline/problem.php?id=3110 题意:-- 思路:其实和之前POJ那道题差不多,只不过是换成区间更新,而且是第k大不是第k小, ...
- 解题:ZJOI 2013 K大数查询
题面 树套树,权值线段树套序列线段树,每次在在权值线段树上的每棵子树上做区间加,查询的时候左右子树二分 本来想两个都动态开点的,这样能体现树套树在线的优越性.但是常数太大惹,所以外层直接固定建树了QA ...
- [ZJOI 2013] K大数查询
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=3110 [算法] 整体二分 + 线段树 时间复杂度 : O(NlogN ^ 2) [代 ...
- 【BZOJ 3110】 [Zjoi2013]K大数查询(整体二分)
[题目] Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到 ...
- 【bzoj 3110】[Zjoi2013]K大数查询
Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位 ...
- 【34.14%】【BZOJ 3110】 [Zjoi2013]K大数查询
Time Limit: 20 Sec Memory Limit: 512 MB Submit: 5375 Solved: 1835 [Submit][Status][Discuss] Descript ...
随机推荐
- cSharp:反射 Reflection
/// <summary> /// 利用反射调用插件方法 /// 涂聚文(Geovin Du) /// 2019-03-27 /// /// </summary> /// &l ...
- CSS3实现全景图特效
基本代码 html代码: <div class="panorama"></div> 首先定义一些基本的样式和动画: .panorama { width: 3 ...
- 51nod“省选”模测第二场 B 异或约数和(数论分块)
题意 题目链接 Sol 这题是来搞笑的吧.. 考虑一个数的贡献是\(O(\frac{N}{i})\) 直接数论分块. #include<bits/stdc++.h> #define Pai ...
- 设计模式系列之过滤器模式(Chriteria Pattern)
过滤器模式(Filter Pattern)或标准模式(Criteria Pattern)是一种设计模式,这种模式允许开发人员使用不同的标准来过滤一组对象,通过逻辑运算以解耦的方式把它们连接起来.这种类 ...
- Spark之Yarn提交模式
一.Client模式 提交命令: ./spark-submit --master yarn --class org.apache.examples.SparkPi ../lib/spark-examp ...
- MongoDB 常用的数据备份梳理汇总
1.基于数据文件的备份 直接将原始的数据文件Copy至备份的地方,这个方法的优点是比较快,因为备份和恢复都不需要转换数据格式.缺点就是需要锁住数据库服务器,但是此方案通常备份是在从节点上进行,备份过程 ...
- python 第二百零八天 ----算法相关
查找方法 : 顺序查找法 二分查找法 import time,random #时间计算 def cal_time(func): def wrapper(*args,**kwargs) ...
- 伙伴系统之避免碎片--Linux内存管理(十六)
1 前景提要 1.1 碎片化问题 分页与分段 页是信息的物理单位, 分页是为了实现非连续分配, 以便解决内存碎片问题, 或者说分页是由于系统管理的需要. 段是信息的逻辑单位,它含有一组意义相对完整的信 ...
- Server 2008 R2多用户远程桌面连接授权,解决120天过期问题
在工作中,我们往往需要远程服务器,经常会遇到以下这两个麻烦事. 一.远程桌面的连接数限制,超出系统就会提示超过连接数. 二.远程桌面连接时,同一个用户不能同时远程2个桌面连接. ----------- ...
- Unix、Windows、Mac OS、Linux系统故事
我们熟知的操作系统大概都是windows系列,近年来Apple的成功,让MacOS也逐渐走进普通用户.在服务器领域,恐怕Linux是无人不知无人不晓.他们都是操作系统,也在自己的领域里独领风骚.这都还 ...