后缀自动机

后缀自动机是一种确定性有限状态自动机, 它可以接收字符串\(s\)的所有后缀.

构造, 性质

翻译自毛子俄罗斯神仙的博客, 讲的很好

后缀自动机详解 - DZYO的博客 - CSDN博客

下面是一些note:

定义

  • 对于字符串\(s\)的子串\(t\), \(endpos(t)\) (或者 \(right(t)\) ) 表示t在s中出现位置的右端点的集合.

    • \(endpos\)互不相交.
    • 有相同 \(endpos\) 集合的字符串构成一个等价类.
    • 对于每个等价类, 包含的字符串长度为\([len(p), maxlen(p)]\) , 是一个连续的区间.
  • 后缀自动机的节点 \(p\) 代表一个 \(endpos\) 相同的子串的集合.
  • 对于后缀自动机的节点 \(p\), \(parent(p)\) (或者 \(link(p)\) ) 表示p在不同等价类中的最长后缀.
    • \(parent\) 形成一棵树关系.
    • \(len(p) = maxlen(parent(p)) +1\)

构建 && 状态数/转移数线性证明

上面的blog已经写的很好了, 我就不重写一遍了:P

示意图

字符串 ab:

其中 * 代表终止节点, 虚箭头表示 \(fa(p)\).

字符串 abb:

字符串 bba 的后缀树 (见后), 即字符串 abb 的前缀树/后缀自动机的 parent 树:

Code

const int nsz=1e6+50,ndsz=2*nsz,csz=27;

ll n;
char s[nsz]; //sam
//p.l means maxlen(p)
struct tnd{int ch[csz],l,fa,cnt;}sam[ndsz];
#define ch(p,c) sam[p].ch[c]
#define fa(p) sam[p].fa
int ps=1,las=1;
int cnt[ndsz],c[ndsz],seq[ndsz];
void insert(int c){
int p=las;
las=++ps,sam[las].l=sam[p].l+1,cnt[las]=1;
for(;p&&ch(p,c)==0;p=fa(p))ch(p,c)=las;
if(p==0)fa(las)=1;
else{
int q=ch(p,c);
if(sam[q].l==sam[p].l+1)fa(las)=q;
else{
int q1=++ps;
sam[q1]=sam[q],sam[q1].l=sam[p].l+1,fa(q)=fa(las)=q1;
for(;p&&ch(p,c)==q;p=fa(p))ch(p,c)=q1;
}
}
}
void build(){
rep(i,1,n)insert(s[i]-'a');
}
struct te{int t,pr;}edge[ndsz];
int hd[ndsz],pe=1;
void adde(int f,int t){edge[++pe]=(te){t,hd[f]};hd[f]=pe;} void buildtr(){
rep(i,2,ps)adde(fa(i),i);
} void gettp(){ //topo sort
rep(i,1,ps)++c[sam[i].l];
rep(i,1,ps)c[i]+=c[i-1];
rep(i,1,ps)seq[c[sam[i].l]--]=i;
} void match(char *s,int n){
int cur=1,l=0;
rep(i,1,n){
if(ch(cur,s[i])){++l,cur=ch(cur,s[i]);}
else{
while(cur&&ch(cur,s[i])==0)cur=fa(cur);
if(cur==0)l=0,cur=1;
else l=sam[cur].l+1,cur=ch(cur,s[i]);
}
}
}

后缀树

后缀树是对字符串 \(S\) 的所有后缀建立的trie树, 同样可以识别 \(S\) 的所有后缀.

为了节省空间, 可以利用虚树的思想. 我们把只有一个子节点的节点压缩到它的父亲, 也就是说, 把没有分叉的一条链压缩成一条边.

显然, 这样建成的后缀 trie 只会保留每个后缀的终止节点('\0'), 和他们的lca. 这两者数量都是 \(O(n)\) 的, 因此状态总数也为 \(O(n)\) .

同时, 字符串 \(S\) 后缀自动机的parent树等价于 \(S\) 逆序 \(S'\) 的后缀树, 可以称作前缀树. 证明见[3].

几个关键问题

在后缀自动机上走路的时间复杂度

23333

就是说对字符串 \(S\) 建立后缀自动机, 然后将字符串 \(T\) 从起点走转移边, 如果没有转移边则跳parent指针. 这样可以求出 \(S\) 与 \(T\) 的每一个公共子串.

记当前 \(S\) 与 \(T\) 的匹配长度为 \(l\). 对于每一次转移, \(l\) 会加 \(1\); 对于跳parent指针, \(l\) 会减少, 而 \(l\) 总的减少不会超过 \(|T|\). 因此总时间复杂度为 \(O(|T|)\).

事实上, 对于insert(c)的均摊时间复杂度的分析是类似的.

代码

//l : max len of current matched string
//p : current state
void match(char *s,int n){
int cur=1,l=0;
rep(i,1,n){
if(ch(cur,s[i])){++l,cur=ch(cur,s[i]);}
else{
while(cur&&ch(cur,s[i])==0)cur=fa(cur);
if(cur==0)l=0,cur=1;
else l=sam[cur].l+1,cur=ch(cur,s[i]);
}
}
}

拓扑序

from [2]

SAM 中的 DAWG 满足一个性质,如果有一条转移边 \(u \rightarrow v\) ,则一定有 \(|\max(u)| < |\max(v)|\)。类似的,如果 \(\text{next}(v) = u\),也有 \(|\max(u)| < |\max(v)|\)。所以,按照每个节点记录的 max 长度排序,可以同时得到 DAWG 和前缀树的拓扑序。

使用桶排序, 那么时间复杂度是\(O(n)\).

代码

void gettp(){ //topo sort
rep(i,1,ps)++c[sam[i].l];
rep(i,1,ps)c[i]+=c[i-1];
rep(i,1,ps)seq[c[sam[i].l]--]=i;
}

这样我们就可以在SAM上进行动态规划.

每个节点代表字符串个数

由定义可知,

节点 \(p\) 代表字符串个数 $ = maxlen(p)-len(p)+1 = maxlen(p)-maxlen(parent(p))$.

同时, 节点 \(p\) 代表字符串个数 = 起点到节点 \(p\) 路径数.

求endpos集合

记非拷贝而来的节点为实节点, 否则为虚节点.

当实节点为第 \(t\) 个字符加入时建立的时, 它的endpos集合中显然有 \(t\), 并且它是endpos集合中有 \(t\) 的节点中maxlen最大的.

那么它的parent节点显然也包含\(t\), 直接跳parent()即可.

这时我们可以O(n)的求出endpos集合的大小:

  • 对于不是拷贝的节点, cnt设为1; 拷贝而来的节点, cnt设为0.
  • 在parent树上dp, \(cnt_p+=\sum_{parent(v)=p} cnt_v\).
  • \(cnt_p\) 表示这个节点endpos集合大小, 也就是在字符串中的出现次数.

如果要求endpos集合, 需要可合并数据结构 (线段树/set/堆等). 利用可持久化线段树合并 ([模板] 线段树合并) 可以求出所有点的 endpos 集合.

最小表示法

建立\(S+S\)的后缀自动机, 从起点开始, 每次走字典序最小的转移, 并记录.

转移 \(|S|\) 次之后, 得到的字符串即为 \(S\) 的最小表示.

后缀自动机的用法

  1. 拓扑序 dp (自动机上/parent树上)
  2. 利用 len 函数和 endpos 集合 (dp, 线段树合并等)
  3. 利用 parent 树
    • 树上的技巧: lca, 倍增, 点分治, 树剖, LCT
    • dp(自上向下, 自下向上, 双重, 倍增)
  4. 利用自动机的性质 (转移等)

参考资料

  1. 后缀自动机详解 - DZYO的博客 - CSDN博客
  2. 后缀自动机学习笔记 | Menci's Blog
  3. [开新坑]对于后缀自动机的一些理解 - Shinbokuow - 不试着去思考的话,不就已经死去了吗
  4. 后缀三兄弟之三——后缀自动机(附广义后缀自动机,子序列自动机) - litble的成(tui)长(fei)史 - CSDN博客
  5. 算法学习:后缀自动机转后缀树转后缀数组 - maxtir的博客 - CSDN博客

[模板] 后缀自动机&&后缀树的更多相关文章

  1. 模板—字符串—后缀自动机(后缀自动机+线段树合并求right集合)

    模板—字符串—后缀自动机(后缀自动机+线段树合并求right集合) Code: #include <bits/stdc++.h> using namespace std; #define ...

  2. BZOJ3413: 匹配(后缀自动机 线段树合并)

    题意 题目链接 Sol 神仙题Orz 后缀自动机 + 线段树合并... 首先可以转化一下模型(想不到qwq):问题可以转化为统计\(B\)中每个前缀在\(A\)中出现的次数.(画一画就出来了) 然后直 ...

  3. cf666E. Forensic Examination(广义后缀自动机 线段树合并)

    题意 题目链接 Sol 神仙题Orz 后缀自动机 + 线段树合并 首先对所有的\(t_i\)建个广义后缀自动机,这样可以得到所有子串信息. 考虑把询问离线,然后把\(S\)拿到自动机上跑,同时维护一下 ...

  4. 洛谷P2178 [NOI2015]品酒大会(后缀自动机 线段树)

    题意 题目链接 Sol 说一个后缀自动机+线段树的无脑做法 首先建出SAM,然后对parent树进行dp,维护最大次大值,最小次小值 显然一个串能更新答案的区间是\([len_{fa_{x}} + 1 ...

  5. BZOJ1396: 识别子串(后缀自动机 线段树)

    题意 题目链接 Sol 后缀自动机+线段树 还是考虑通过每个前缀的后缀更新答案,首先出现次数只有一次,说明只有\(right\)集合大小为\(1\)的状态能对答案产生影响 设其结束位置为\(t\),代 ...

  6. [Luogu5161]WD与数列(后缀数组/后缀自动机+线段树合并)

    https://blog.csdn.net/WAautomaton/article/details/85057257 解法一:后缀数组 显然将原数组差分后答案就是所有不相交不相邻重复子串个数+n*(n ...

  7. 【BZOJ-1396&2865】识别子串&字符串识别 后缀自动机/后缀树组 + 线段树

    1396: 识别子串 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 312  Solved: 193[Submit][Status][Discuss] ...

  8. 洛谷P4493 [HAOI2018]字串覆盖(后缀自动机+线段树+倍增)

    题面 传送门 题解 字符串就硬是要和数据结构结合在一起么--\(loj\)上\(rk1\)好像码了\(10k\)的样子-- 我们设\(L=r-l+1\) 首先可以发现对于\(T\)串一定是从左到右,能 ...

  9. luogu5212/bzoj2555 substring(后缀自动机+动态树)

    对字符串构建一个后缀自动机. 每次查询的就是在转移边上得到节点的parent树中后缀节点数量. 由于强制在线,可以用动态树维护后缀自动机parent树的子树和. 注意一个玄学的优化:每次在执行连边操作 ...

随机推荐

  1. java开发环境配置——JDK

    虽然网上有很多类似的文章了,第一次搭的时候也是看的网上的文章,但为了做个记录,自己也写一下,记录一下. 首先是先安装JDK,JDK下载可以直接去官网下载,地址:http://www.oracle.co ...

  2. Django学习之二:Django 项目创建 和 应用创建

    Django 项目创建 和 应用创建 创建一个Django项目 都是在相应平台的命令行环境下操作: 1. 进入用于存放项目的目录下 1.1 windows下切换目录:先进入具体的分区磁盘中如E盘就输入 ...

  3. set用法小结

    set本质上是一棵红黑树,用法也就那么几个,插入删除lowerbound,再就是迭代器之类的 基本用法 begin()--返回指向第一个元素的迭代器 #include<cstdio> #i ...

  4. nginx 防止盗链

    1.测试盗链(www.html2.com 盗取 www.html5.com的图片) 2.防止盗链 符合盗链 —— 重写 说明:if ($invalid_referer) {,if的后面是有空格的,如果 ...

  5. Python第二天 变量 运算符与表达式 input()与raw_input()区别 字符编码 python转义符 字符串格式化 format函数字符串格式化 帮助

    Python第二天  变量  运算符与表达式  input()与raw_input()区别  字符编码  python转义符  字符串格式化  format函数字符串格式化  帮助 目录 Pychar ...

  6. iOS开发者学习Flutter

    Flutter for iOS 开发者 本文档适用那些希望将现有 iOS 经验应用于 Flutter 的开发者.如果你拥有 iOS 开发基础,那么你可以使用这篇文档开始学习 Flutter 的开发. ...

  7. Windows Server 2016-查询并导出固定时间段创建AD用户

    生产环境中往往我们有各式各样的需求,例如快速查询某段时间创建用户,或批量导出固定时间段创建用户列表,具体操作如下: $date=Get-Date $oldday=(Get-Date).AddDays( ...

  8. Python爬虫之正则表达式(2)

    # 最常规的匹配 import re content = 'Hello 123 4567 World_This is a Regex Demo' print(len(content)) result ...

  9. Linux Collection:系统信息和配置

    PAS Linux系统配置相关文件 /etc 目录中是系统和各类软件的配置文件 /var/log 系统日志 /proc 系统运行信息 PAS /boot空间不足 查看内核 dpkg --get-sel ...

  10. Django--session(登录用)

    一.session的原理图 二.Django中session对象的设置/读取/删除及其他方法 三. Django--配置 settings.py中与session有关的参数 一.session的原理图 ...