seq2seq
seq2seq:
seq2seq就是将输入序列经过encoder-decoder变成目标序列。
如图所示,输入序列是 [A, B, C, <EOS>],输出序列是 [W, X, Y, Z, <EOS>]
encoder-decoder:
主要过程就是用RNN对输入序列进行编码,然后再用RNN对上下文向量进行解码。
实现方式:
1、tf.nn.dynamic_rnn
参考:https://github.com/ematvey/tensorflow-seq2seq-tutorials/blob/master/1-seq2seq.ipynb
流程:
输入序列: [A,B,C,EOS],其中A,B,C, EOS都要进行embedding,encoder部分的代码如下所示:
encoder_cell = tf.contrib.rnn.LSTMCell(encoder_hidden_units) encoder_outputs, encoder_final_state = tf.nn.dynamic_rnn(
encoder_cell, encoder_inputs_embedded,
dtype=tf.float32, time_major=True,
)
encoder_outputs是一个时间步的输出,这个在decoder中用不到。encoder_final_stata是最后一层的输出结果,encoder_final_state是一个二元组,(整体的记忆c,隐藏层状态h),然后用encoder_final_state来初始化decoder的状态,而decoder的输入序列为 [EOS, A, B, C],因为dynamic_rnn不能根据上一步的输出来作为当前的输入,所以对于输入来说是固定,而非动态变化的。
decoder_cell = tf.contrib.rnn.LSTMCell(decoder_hidden_units) decoder_outputs, decoder_final_state = tf.nn.dynamic_rnn(
decoder_cell, decoder_inputs_embedded, initial_state=encoder_final_state, dtype=tf.float32, time_major=True, scope="plain_decoder",
)
2、tf.nn.raw_rnn
这种方法不像dynamic_rnn那样固定,它比较灵活,可以通过迭代函数改变每一个时间步的 输入状态、输入。
tf.nn.raw_rnn(
cell, //基础神经元
loop_fn, //迭代函数,每次的状态与输入都可以在这里定义
parallel_iterations=None,
swap_memory=False,
scope=None
)
输出:
(emit_ta, final_state, final_loop_state),其中emit_ta是TensorArray类型,其实就是每一个时间步输出的tensor的数组,final_state最后的状态,final_loop_state这个好像是None,不知道啥作用
实现步骤
整体:
decoder_outputs_ta, decoder_final_state, _ = tf.nn.raw_rnn(decoder_cell, loop_fn) //decoder_cell是基础神经单元,loop_fn是迭代函数
迭代函数:
//迭代函数包含time, previous_output, previous_state, previous_loop_state(这个相当于LSTM中那个全局的记忆)
def loop_fn(time, previous_output, previous_state, previous_loop_state):
if previous_state is None: # time == 0, 初始化
assert previous_output is None and previous_state is None
return loop_fn_initial()
else:
return loop_fn_transition(time, previous_output, previous_state, previous_loop_state) //在上一个时间步结束后,即将进入当前时间步时会执行该函数,目的就是确定要将哪些内容传给下一步作为状态输入和输入向量
初始化函数:
def loop_fn_initial():
initial_elements_finished = (0 >= decoder_lengths) # all False at the initial step
initial_input = eos_step_embedded #第一步的输入是EOS
initial_cell_state = encoder_final_state #状态输入就是encoder的最终输出状态,包括(c,h)
initial_cell_output = None
initial_loop_state = None # we don't need to pass any additional information
return (initial_elements_finished,
initial_input,
initial_cell_state,
initial_cell_output,
initial_loop_state)
迭代函数:
def loop_fn_transition(time, previous_output, previous_state, previous_loop_state):
#如何获取上一步的输出
yhat = softmax(previous_output * W + b)
然后概率最大的那个yhat即为上一步的输出结果,并对这个结果进行embedding,作为下一步的输入 def get_next_input():
output_logits = tf.add(tf.matmul(previous_output, W), b)
prediction = tf.argmax(output_logits, axis=)
next_input = tf.nn.embedding_lookup(embeddings, prediction)
return next_input
#判断是否停止,常数 >= tensor向量,tensor中每个位置都要和常数进行比较,结果是一个布尔型的tensor向量
elements_finished = (time >= decoder_lengths) # this operation produces boolean tensor of [batch_size]
# defining if corresponding sequence has ended
#因为这是一个batch块,所以该batch完成的标志是 所有的item都finish,所以需要reduce_all
finished = tf.reduce_all(elements_finished) # -> boolean scalar
#当前步的输入 = 上一步的输出(get_next_input)
#tf.cond(条件,True时调用的函数, False时调用的函数)
input = tf.cond(finished, lambda: pad_step_embedded, get_next_input)
state = previous_state #状态不用改变直接传过去
output = previous_output #previous_output也不用变,好像这个output是一个TensorArray吧?
loop_state = None return (elements_finished,
input,
state,
output,
loop_state)
调用过程:
decoder_outputs_ta, decoder_final_state, _ = tf.nn.raw_rnn(decoder_cell, loop_fn)
这样就实现了将上一步decoder出来的结果作为下一步的输入,真正实现上图中的过程。
待补充Attention机制
参考:
https://github.com/ematvey/tensorflow-seq2seq-tutorials
seq2seq的更多相关文章
- DL4NLP —— seq2seq+attention机制的应用:文档自动摘要(Automatic Text Summarization)
两周以前读了些文档自动摘要的论文,并针对其中两篇( [2] 和 [3] )做了presentation.下面把相关内容简单整理一下. 文本自动摘要(Automatic Text Summarizati ...
- 深度学习之seq2seq模型以及Attention机制
RNN,LSTM,seq2seq等模型广泛用于自然语言处理以及回归预测,本期详解seq2seq模型以及attention机制的原理以及在回归预测方向的运用. 1. seq2seq模型介绍 seq2se ...
- 深度学习之 seq2seq 进行 英文到法文的翻译
深度学习之 seq2seq 进行 英文到法文的翻译 import os import torch import random source_path = "data/small_vocab_ ...
- ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档]
ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档] 简介 简单地说就是该有的都有了,但是总体跑起来效果还不好. 还在开发中,它工作的效果还不好.但是你可以直 ...
- ChatGirl is an AI ChatBot based on TensorFlow Seq2Seq Model
Introduction [Under developing,it is not working well yet.But you can just train,and run it.] ChatGi ...
- tf.contrib.seq2seq.sequence_loss example:seqence loss 实例代码
#!/usr/bin/env python # -*- coding: utf-8 -*- import tensorflow as tf import numpy as np params=np.r ...
- 深度学习之注意力机制(Attention Mechanism)和Seq2Seq
这篇文章整理有关注意力机制(Attention Mechanism )的知识,主要涉及以下几点内容: 1.注意力机制是为了解决什么问题而提出来的? 2.软性注意力机制的数学原理: 3.软性注意力机制. ...
- Pytorch系列教程-使用Seq2Seq网络和注意力机制进行机器翻译
前言 本系列教程为pytorch官网文档翻译.本文对应官网地址:https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutor ...
- [转] 图解Seq2Seq模型、RNN结构、Encoder-Decoder模型 到 Attention
from : https://caicai.science/2018/10/06/attention%E6%80%BB%E8%A7%88/ 一.Seq2Seq 模型 1. 简介 Sequence-to ...
随机推荐
- SQLServer之创建不可重复读
创建不可重复读注意事项 语法:set transaction isolation level repeatable read. 指定语句不能读取已由其他事务修改但尚未提交的行,并且指定,其他任何事务都 ...
- 基本服务器的AAA实验(Cisco PT)
1.实验拓扑 2.不通网段间的ping通测试 从pc-a ping到pc-b 从pc-a ping到pc-c 从pc-b ping到pc-c 3.配置过程 a.在路由器R1上配置一个本地用户账号并且利 ...
- QTableWidget class
Help on class QTableWidget in module PyQt5.QtWidgets: class QTableWidget(QTableView) | QTableWidge ...
- vue nextTick使用
Vue nextTick使用 vue生命周期 原因是在created()钩子函数执行的时候DOM 其实并未进行任何渲染,而此时进行DOM操作无异于徒劳,所以此处一定要将DOM操作的js代码放进Vue. ...
- CSS有哪些引入方式,link和@import的区别
3种方式哦,行内样式.内部样式表.外部样式表 1. 行内样式又称为内联样式,直接在HTML标签的style属性中添加css. 会导致 HTML 代码变得冗长 2. 内部样式表又称为嵌入方式,是在HTM ...
- day09(垃圾回收机制)
1,复习 文件处理 1.操作文件的三步骤 -- 打开文件:硬盘的空间被操作系统持有 | 文件对象被应用程序持续 -- 操作文件:读写操作 -- 释放文件:释放操作系统对硬盘空间的持有 2.基础的读写 ...
- C#-之属性(1)
1. 属性定义方式与字段类似,但还包括Set和Get两个访问器,其格式如下: public/private <type> Name { get { return variable: ...
- jexus独立版设置支持https
先用命令找到libssl.so find / -name libssl.so.* 执行完命令之后找到libssl.so.x.x.x如(libssl.so.1.0.0) 再到jexus/runtime/ ...
- this直接加在函数或者是 “原型”对象的区别
如果加在函数上,可以用函数直接调用,如果是加在原型对象时,那就的创建新对象,才能使用,最重要的是影响继承 直接加在函数上的,不能被新对象继承
- OpenCV4.1.0实践(2) - Dlib+OpenCV人脸特征检测
待更! 参考: python dlib opencv 人脸68点特征检测