[Reinforcement Learning] 马尔可夫决策过程
在介绍马尔可夫决策过程之前,我们先介绍下情节性任务和连续性任务以及马尔可夫性。
情节性任务 vs. 连续任务
- 情节性任务(Episodic Tasks),所有的任务可以被可以分解成一系列情节,可以看作为有限步骤的任务。
- 连续任务(Continuing Tasks),所有的任务不能分解,可以看作为无限步骤任务。
马尔可夫性
引用维基百科对马尔可夫性的定义:
马尔可夫性:当一个随机过程在给定现在状态及所有过去状态情况下,其未来状态的条件概率分布仅依赖于当前状态。
用数学形式表示如下:
A state \(S_t\) is Markov if and only if
\[P[S_{t+1}|S_t] = P[S_{t+1}|S_1, ..., S_t]\]
马尔可夫过程
马尔可夫过程即为具有马尔可夫性的过程,即过程的条件概率仅仅与系统的当前状态相关,而与它的过去历史或未来状态都是独立、不相关的。
马尔可夫奖赏过程
马尔可夫奖赏过程(Markov Reward Process,MRP)是带有奖赏值的马尔可夫过程,其可以用一个四元组表示 \(<S, P, R, \gamma>\)。
- \(S\) 为有限的状态集合;
- \(P\) 为状态转移矩阵,\(P_{ss^{'}} = P[S_{t+1} = s^{'}|S_t = s]\);
- \(R\) 是奖赏函数;
- \(\gamma\) 为折扣因子(discount factor),其中 \(\gamma \in [0, 1]\)
奖赏函数
在 \(t\) 时刻的奖赏值 \(G_t\):
\[G_t = R_{t+1} + \gamma R_{t+2} + ... = \sum_{k=0}^{\infty}\gamma^{k}R_{t+k+1}\]
Why Discount
关于Return的计算为什么需要 \(\gamma\) 折扣系数。David Silver 给出了下面几条的解释:
- 数学表达的方便
- 避免陷入无限循环
- 远期利益具有一定的不确定性
- 在金融学上,立即的回报相对于延迟的回报能够获得更多的利益
- 符合人类更看重眼前利益的特点
价值函数
状态 \(s\) 的长期价值函数表示为:
\[v(s) = E[G_t | S_t = s] \]
Bellman Equation for MRPs
\[
\begin{align}
v(s)
&= E[G_t|S_t=s]\\
&= E[R_{t+1} + \gamma R_{t+2} + ... | S_t = s]\\
&= E[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} ... ) | S_t = s]\\
&= E[R_{t+1} + \gamma G_{t+1} | S_t = s]\\
&= E[R_{t+1} + \gamma v(s_{t+1}) | S_t = s]
\end{align}
\]
下图为MRP的 backup tree 示意图:
注:backup tree 中的白色圆圈代表状态,黑色圆点对应动作。
根据上图可以进一步得到:
\[v(s) = R_s + \gamma \sum_{s' \in S}P_{ss'}v(s')\]
马尔可夫决策过程
马尔可夫决策过程(Markov Decision Process,MDP)是带有决策的MRP,其可以由一个五元组构成 \(<S, A, P, R, \gamma>\)。
- \(S\) 为有限的状态集合;
- \(A\) 为有限的动作集合;
- \(P\) 为状态转移矩阵,\(P_{ss^{'}}^{a} = P[S_{t+1} = s^{'}|S_t = s,A_t=a]\);
- \(R\) 是奖赏函数;
- \(\gamma\) 为折扣因子(discount factor),其中 \(\gamma \in [0, 1]\)
我们讨论的MDP一般指有限(离散)马尔可夫决策过程。
策略
策略(Policy)是给定状态下的动作概率分布,即:
\[\pi(a|s) = P[A_t = a|S_t = a]\]
状态价值函数 & 最优状态价值函数
给定策略 \(\pi\) 下状态 \(s\) 的状态价值函数(State-Value Function)\(v_{\pi}(s)\):
\[v_{\pi}(s) = E_{\pi}[G_t|S_t = s]\]
状态 \(s\) 的最优状态价值函数(The Optimal State-Value Function)\(v_{*}(s)\):
\[v_{*}(s) = \max_{\pi}v_{\pi}(s)\]
动作价值函数 & 最优动作价值函数
给定策略 \(\pi\),状态 \(s\),采取动作 \(a\) 的动作价值函数(Action-Value Function)\(q_{\pi}(s, a)\):
\[q_{\pi}(s, a) = E_{\pi}[G_t|S_t = s, A_t = a]\]
状态 \(s\) 下采取动作 \(a\) 的最优动作价值函数(The Optimal Action-Value Function)\(q_{*}(s, a)\):
\[q_{*}(s, a) = \max_{\pi}q_{\pi}(s, a)\]
最优策略
如果策略 \(\pi\) 优于策略 \(\pi^{'}\):
\[\pi \ge \pi^{'} \text{ if } v_{\pi}(s) \ge v_{\pi^{'}}(s), \forall{s}\]
最优策略 \(v_{*}\) 满足:
- \(v_{*} \ge \pi, \forall{\pi}\)
- \(v_{\pi_{*}}(s) = v_{*}(s)\)
- \(q_{\pi_{*}}(s, a) = q_{*}(s, a)\)
如何找到最优策略?
可以通过最大化 \(q_{*}(s, a)\) 来找到最优策略:
\[
v_{*}(a|s) =
\begin{cases}
& 1 \text{ if } a=\arg\max_{a \in A}q_{*}(s,a)\\
& 0 \text{ otherwise }
\end{cases}
\]
对于MDP而言总存在一个确定的最优策略,而且一旦我们获得了\(q_{*}(s,a)\),我们就能立即找到最优策略。
Bellman Expectation Equation for MDPs
我们先看下状态价值函数 \(v^{\pi}\)。
状态 \(s\) 对应的 backup tree 如下图所示:
根据上图可得:
\[v_{\pi}(s) = \sum_{a \in A}\pi(a|s)q_{\pi}(s, a) \qquad (1)\]
再来看动作价值函数 \(q_{\pi}(s, a)\)。
状态 \(s\),动作 \(a\) 对应的 backup tree 如下图所示:
因此可得:
\[q_{\pi}(s,a)=R_s^a + \gamma \sum_{s'\in S}P_{ss'}^a v_{\pi}(s') \qquad (2)\]
进一步细分 backup tree 再来看 \(v^{\pi}\) 与 \(q_{\pi}(s, a)\) 对应的表示形式。
细分状态 \(s\) 对应的 backup tree 如下图所示:
将式子(2)代入式子(1)可以进一步得到 \(v_{\pi}(s)\) 的贝尔曼期望方程:
\[v_{\pi}(s) = \sum_{a \in A} \pi(a | s) \Bigl( R_s^a + \gamma \sum_{s'\in S}P_{ss'}^a v_{\pi}(s') \Bigr) \qquad (3)\]
细分状态 \(s\),动作 \(a\) 对应的 backup tree 如下图所示:
将式子(1)代入式子(2)可以得到 \(q_{\pi}(s,a)\) 的贝尔曼期望方程:
\[q_{\pi}(s,a)=R_s^a + \gamma \sum_{s'\in S}P_{ss'}^a \Bigl(\sum_{a' \in A}\pi(a'|s')q_{\pi}(s', a') \Bigr) \qquad (4)\]
Bellman Optimality Equation for MDPs
同样我们先看 \(v_{*}(s)\):
对应可以写出公式:
\[v_{*}(s) = \max_{a}q_{*}(s, a) \qquad (5)\]
再来看\(q_{*}(s, a)\):
对应公式为:
\[q_{*}(s, a) = R_s^a + \gamma \sum_{s'\in S}P_{ss'}^a v_{*}(s') \qquad (6)\]
同样的套路获取 \(v_{*}(s)\) 对应的 backup tree 以及贝尔曼最优方程:
贝尔曼最优方程:
\[v_{*}(s) = \max_{a} \Bigl( R_s^a + \gamma \sum_{s'\in S}P_{ss'}^a v_{*}(s') \Bigr) \qquad (7)\]
\(q_{*}(s, a)\) 对应的 backup tree 以及贝尔曼最优方程:
对应的贝尔曼最优方程:
\[R_s^a + \gamma \sum_{s'\in S}P_{ss'}^a\max_{a}q_{*}(s, a) \qquad (8)\]
贝尔曼最优方程特点
- 非线性(non-linear)
- 通常情况下没有解析解(no closed form solution)
贝尔曼最优方程解法
- Value Iteration
- Policy Iteration
- Sarsa
- Q-Learning
MDPs的相关扩展问题
- 无限MDPs/连续MDPs
- 部分可观测的MDPs
- Reward无折扣因子形式的MDPs/平均Reward形式的MDPs
Reference
[1] 维基百科-马尔可夫性
[2] Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto, 2018
[3] David Silver's Homepage
[Reinforcement Learning] 马尔可夫决策过程的更多相关文章
- David Silver强化学习Lecture2:马尔可夫决策过程
课件:Lecture 2: Markov Decision Processes 视频:David Silver深度强化学习第2课 - 简介 (中文字幕) 马尔可夫过程 马尔可夫决策过程简介 马尔可夫决 ...
- 【cs229-Lecture16】马尔可夫决策过程
之前讲了监督学习和无监督学习,今天主要讲“强化学习”. 马尔科夫决策过程:Markov Decision Process(MDP) 价值函数:value function 值迭代:value iter ...
- 【RL系列】马尔可夫决策过程——状态价值评价与动作价值评价
请先阅读上两篇文章: [RL系列]马尔可夫决策过程中状态价值函数的一般形式 [RL系列]马尔可夫决策过程与动态编程 状态价值函数,顾名思义,就是用于状态价值评价(SVE)的.典型的问题有“格子世界(G ...
- 【RL系列】马尔可夫决策过程——Jack‘s Car Rental
本篇请结合课本Reinforcement Learning: An Introduction学习 Jack's Car Rental是一个经典的应用马尔可夫决策过程的问题,翻译过来,我们就直接叫它“租 ...
- 转:增强学习(二)----- 马尔可夫决策过程MDP
1. 马尔可夫模型的几类子模型 大家应该还记得马尔科夫链(Markov Chain),了解机器学习的也都知道隐马尔可夫模型(Hidden Markov Model,HMM).它们具有的一个共同性质就是 ...
- 增强学习(二)----- 马尔可夫决策过程MDP
1. 马尔可夫模型的几类子模型 大家应该还记得马尔科夫链(Markov Chain),了解机器学习的也都知道隐马尔可夫模型(Hidden Markov Model,HMM).它们具有的一个共同性质就是 ...
- 强化学习-MDP(马尔可夫决策过程)算法原理
1. 前言 前面的强化学习基础知识介绍了强化学习中的一些基本元素和整体概念.今天讲解强化学习里面最最基础的MDP(马尔可夫决策过程). 2. MDP定义 MDP是当前强化学习理论推导的基石,通过这套框 ...
- 【RL系列】马尔可夫决策过程中状态价值函数的一般形式
请先阅读上一篇文章:[RL系列]马尔可夫决策过程与动态编程 在上一篇文章里,主要讨论了马尔可夫决策过程模型的来源和基本思想,并以MAB问题为例简单的介绍了动态编程的基本方法.虽然上一篇文章中的马尔可夫 ...
- 马尔可夫决策过程MDP
1. 马尔可夫模型的几类子模型 马尔科夫链(Markov Chain),了解机器学习的也都知道隐马尔可夫模型(Hidden Markov Model,HMM).它们具有的一个共同性质就是马尔可夫性(无 ...
随机推荐
- C语言实现将日期、时间保存到文本文件中
今天突然兴起,看来一下C语言的文件操作,以前在学习的时候,总是一带而过,觉得没有什么用处:但是现在看来,还真的没有什么用处,最后,我现在还有用到,当然这只是我的个人认为,并不能说明什么,在此我将自己写 ...
- js深浅拷贝
作为一枚前段,我们知道对象类型在赋值的过程中其实是复制了地址,从而会导致改变了一方其他也都被改变的情况.通常在开发中我们不希望出现这样的问题,我们可以使用浅拷贝来解决这个情况. 浅拷贝 首先可以通过O ...
- BAT面试题:请使用递归构建N叉树
题目要求: 现在我们拥有全国的省.市.县.镇的行政信息,比如 浙江省 -> 杭州市 -> 西湖区 --> xx街道,请将这些信息构建成一棵树,根节点为全国,叶子节点为镇. 我的误解: ...
- git命令的理解与扩展
Git的模式如图: Workspace:工作区 Index / Stage:暂存区 Repository:仓库区(或本地仓库) Repository:仓库区(或本地仓库) 一.新建代码库 # 查看gi ...
- vue页面固定锁死
- [2019.03.25]Linux中的查找
TMUX天下第一 全世界所有用CLI Linux的人都应该用TMUX,我爱它! ======================== 以下是正文 ======================== Linu ...
- Fedora 24系统基本命令
Fedora 24基本命令 一. DNF软件管理 1. 修改配置:在/etc/dnf/dnf.conf中加入fastestmirror=true.keepcache=true ...
- Nginx+rtmp+ffmpeg 搭建推流服务器
1. 安装nginx服务器 1.1 clone $ brew tap denji/homebrew-nginx 1.2 安装 $ brew install nginx-full --with-rtmp ...
- Linux下MySql的登陆和管理操作
一.mysql数据库启停1.linux下启动mysql的命令: mysqladmin start/ect/init.d/mysql start (前面为mysql的安装路径)2.linux下重启 ...
- [洛谷P1419] 寻找段落
一道单调队列的好题 传送门:>Here< 题意:求一个连续子段,其长度在\([S,T]\)之间,使其平均值最大.保留三位小数 解题思路 考虑二分答案,转化为判定问题.设当前二分到\(k\) ...