Description

Crash小朋友最近迷上了一款游戏——文明5(Civilization V)。在这个游戏中,玩家可以建立和发展自己的国家,通过外交和别的国家交流,或是通过战争征服别的国家。现在Crash已经拥有了一个N个城市的国家,这些城市之间通过道路相连。由于建设道路是有花费的,因此Crash只修建了N-1条道路连接这些城市,不过可以保证任意两个城市都有路径相通。在游戏中,Crash需要选择一个城市作为他的国家的首都,选择首都需要考虑很多指标,有一个指标是这样的:$S(i)=\sum _{j=1}^Ndist(i,j)^k$。其中S(i)表示第i 个城市的指标值,dist(i, j)表示第i个城市到第j个城市需要经过的道路条数的最小值,k为一个常数且为正整数。因此Crash交给你一个简单的任务:给出城市之间的道路,对于每个城市,输出这个城市的指标值,由于指标值可能会很大,所以你只需要输出这个数 mod 10007 的值。

Input

输入的第一行包括两个正整数N和k。下面有N-1行,每行两个正整数u、v (1 ≤ u, v ≤ N),表示第u个城市和第v个城市之间有道路相连。这些道路保证能符合题目的要求。

Output

输出共N行,每行一个正整数,第i行的正整数表示第i个城市的指标值 mod 10007 的值。

用结论来化简式子:$x^n=\sum _{i=1}^n S(n,i)\cdot F(x,i)$

$S(n,i)$为第二类斯特林数,$F(x,i)=\frac{x!}{(x-i)!}$

可得:$$\begin{align*} ans(i)&=\sum _{j=1}^ndist(i,j)^m\\ &=\sum_{j=1}^{n}\sum_{k=1}^{m}S(m,k)\cdot F(dist(i,j),k)\\ &=\sum_{k=1}^{m}S(m,k)\sum_{j=1}^{n} F(dist(i,j),k)\\ &=\sum_{k=1}^{m}S(m,k)\cdot k!\cdot \sum_{j=1}^{n} C(dist(i,j),k) \end{align*}$$

根据组合数递推公式:$C(n,m)=C(n-1,m)+C(n-1,m-1)$ 就可以很方便的对后面的部分进行树形dp了。

具体地,令 $up(x,i)$ 为不在 $x$ 的子树中的部分的贡献,令 $dn(x,i)$ 为 $x$ 的子树的贡献。特别的,$dn(x,0)=1$。

详见代码。

 #include<cstdio>
#include<algorithm>
#include<cstring>
#define LL long long
using namespace std;
const int N=5e4+;
const int M=;
const int mod=1e4+;
int n,m,u,v,cnt,ans,tmp;
int first[N],fac[M],s[M][M];
int up[N][M],dn[N][M];
struct edge{int to,next;}e[N*];
int read()
{
int x=,f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
void ins(int u,int v){e[++cnt]=(edge){v,first[u]};first[u]=cnt;}
void Mod(int& a,int b){a+=b;if(a>=mod)a-=mod;}
void dfs1(int x,int fa)
{
dn[x][]=;
for(int i=first[x];i;i=e[i].next)
{
int to=e[i].to;
if(to==fa)continue;
dfs1(to,x);
Mod(dn[x][],dn[to][]);
for(int j=;j<=m;j++)
Mod(dn[x][j],(dn[to][j]+dn[to][j-])%mod);
}
}
void dfs2(int x,int fa)
{
if(fa!=-)
{
up[x][]=n-dn[x][];
for(int i=;i<=m;i++)
{
Mod(up[x][i],(up[fa][i]+up[fa][i-])%mod);
Mod(up[x][i],(dn[fa][i]+dn[fa][i-])%mod);
Mod(up[x][i],(*mod-dn[x][i]-dn[x][i-])%mod);
Mod(up[x][i],(mod-dn[x][i-])%mod);
if(i!=)Mod(up[x][i],(mod-dn[x][i-])%mod);
}
}
for(int i=first[x];i;i=e[i].next)
if(e[i].to!=fa)dfs2(e[i].to,x);
}
int main()
{
int L,now,A,B,Q;
n=read();m=read();L=read();
now=read();A=read();B=read();Q=read();
for(int i=;i<n;i++)
{
now=(now*A+B)%Q;
tmp=i<L?i:L;
u=i-now%tmp;v=i+;
ins(u,v);ins(v,u);
}
// n=read();m=read();
// for(int i=1;i<n;i++)
// {
// u=read();v=read();
// ins(u,v);ins(v,u);
// }
fac[]=s[][]=;
for(int i=;i<=m;i++)
{
fac[i]=fac[i-]*i%mod;
for(int j=;j<=i;j++)
s[i][j]=(s[i-][j]*j+s[i-][j-])%mod;
}
dfs1(,-);dfs2(,-);
for(int i=;i<=n;i++)
{
ans=;
for(int j=;j<=m;j++)
Mod(ans,s[m][j]*fac[j]%mod*(up[i][j]+dn[i][j])%mod);
printf("%d\n",ans);
}
return ;
}

【bzoj 2159】Crash 的文明世界的更多相关文章

  1. bzoj 2159: Crash 的文明世界

    Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 480  Solved: 234[Submit][Status][Discuss] Descripti ...

  2. BZOJ.2159.Crash的文明世界(斯特林数 树形DP)

    BZOJ 洛谷 挺套路但并不难的一道题 \(Description\) 给定一棵\(n\)个点的树和\(K\),边权为\(1\).对于每个点\(x\),求\(S(x)=\sum_{i=1}^ndis( ...

  3. BZOJ 2159: Crash 的文明世界(树形dp+第二类斯特林数+组合数)

    题意 给定一棵 \(n\) 个点的树和一个常数 \(k\) , 对于每个 \(i\) , 求 \[\displaystyle S(i) = \sum _{j=1} ^ {n} \mathrm{dist ...

  4. bzoj 2159 Crash 的文明世界 && hdu 4625 JZPTREE ——第二类斯特林数+树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 学习材料:https://blog.csdn.net/litble/article/d ...

  5. bzoj 2159 Crash 的文明世界 & hdu 4625 JZPTREE —— 第二类斯特林数+树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 使用公式:\( n^{k} = \sum\limits_{i=0}^{k} S(k,i ...

  6. [bzoj 2159]Crash的文明世界

    今天看到一个鬼题 心情好的时候写 [题意]求树上所有点对距离的k次方和,所有边权为1 大爷方的题解:http://tonyfang.is-programmer.com/posts/204972.htm ...

  7. bzoj 2159 - Crash 的 文明世界

    Description 给定一棵\(n\le 10^5\)的树, 和\(k\le 150\) 求每个点\(x\)的\[S(x) = \sum_{y=1}^n dis(x, y) ^ k\] Analy ...

  8. BZOJ 2159: Crash 的文明世界 第二类斯特林数+树形dp

    这个题非常巧妙啊~ #include <bits/stdc++.h> #define M 170 #define N 50003 #define mod 10007 #define LL ...

  9. BZOJ 2159: Crash 的文明世界(组合数学+第二类斯特林数+树形dp)

    传送门 解题思路 比较有意思的一道数学题.首先\(n*k^2\)的做法比较好想,就是维护一个\(x^i\)这种东西,然后转移的时候用二项式定理拆开转移.然后有一个比较有意思的结论就是把求\(x^i\) ...

  10. 【BZOJ2159】Crash的文明世界(第二类斯特林数,动态规划)

    [BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\) ...

随机推荐

  1. 分布式系统CAP理论

    在单机的数据库系统之中,我们很容易实现一套满足ACID 特性的 事务处理系统, 事务的一致性不存在问题. 但是在分布式系统之中,由于数据分布在不同的主机结点上,如何对着些数据进行分布式的事务处理就具有 ...

  2. Unity NPOI 无法读取xlsx

    遇到问题 在做编辑器开发时,需要在Unity Editor下直接读取Excel源文件,首先想到的是通过npoi去读取,但是遇到无法读取xlsx格式,只能读取xls格式的问题. 我的环境 unity 2 ...

  3. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  4. 正则表达式,提取html标签的属性值

    /** * 提取HTML标签的属性值 * @param source HTML标签内容 * "<a title=中国体育报 href=''>aaa</a><a ...

  5. Django 使用mysql 创建项目

    一.安装 mysql 和 mysqlclient 1. 安装 mysql ,https://www.jianshu.com/p/07a9826898c0 2. pip3 install mysqlcl ...

  6. Cookies, Claims and Authentication in ASP.NET Core(转载)

    Most of the literature concerning the theme of authentication in ASP.NET Core focuses on the use of ...

  7. jeecg入门操作—一对多表单开发

    一.创建主表 创建订单主表(torder_main)  二.创建附表客户信息表(torder_customer) 设置附表页面外键不可见 设置附表外键  三.创建附表机票 信息表(torder_tic ...

  8. Linux安装Kafka

    https://blog.csdn.net/qq_33257527/article/details/85227478 https://jingyan.baidu.com/article/36d6ed1 ...

  9. Windows apache-flume-1.6.0+Kafka+Es

    apache-flume-1.6.0 kafka_2.11-1.1.0 elasticsearch1.5.1 flume配置 a1.sources = kafkaSource a1.channels ...

  10. javascript闭包以及闭包的作用

    什么是闭包?———>是一个函数,一个可以访问其他函数内部数据的函数. 栗子一: function foo() { var a = 1; } function fn() { console.log ...