P4211 [LNOI2014]LCA
P4211 [LNOI2014]LCA
分析:
首先一种比较有趣的转化是,将所有点到1的路径上都+1,然后z到1的路径上的和,就是所有答案的deep的和。
对于多次询问,要么考虑有把询问离线,省去每次询问的复杂度,多个一起处理,要么做到优化掉查询。
这里发现求deep和的过程不能在省了,于是可以差分询问,枚举右端点,然后查询所有1到这个点的和。
而第一步的操作可以树链剖分完成。(并且查询的是一个区间,这也保证了这样做可行)
复杂度$O(nlog^2n)$
代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cctype>
#include<set>
#include<queue>
#include<vector>
#include<map>
#define pa pair<int,int>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = , mod = ;
struct Edge{ int to, nxt; } e[N << ];
int head[N], sum[N << ], tag[N << ], fa[N], siz[N], son[N], bel[N], xl[N], ans[N];
int En, Index, n;
vector< pa > Que[N]; inline void add_edge(int u,int v) {
++En; e[En].to = v, e[En].nxt = head[u]; head[u] = En;
}
inline void pushdown(int rt,int len) {
sum[rt << ] += (len - (len / )) * tag[rt];
sum[rt << | ] += (len / ) * tag[rt];
tag[rt << ] += tag[rt];
tag[rt << | ] += tag[rt];
tag[rt] = ;
}
void update(int l,int r,int rt,int L,int R) {
if (L <= l && r <= R) {
tag[rt] ++; (sum[rt] += r - l + ) %= mod; return ;
}
if (tag[rt]) pushdown(rt, r - l + );
int mid = (l + r) >> ;
if (L <= mid) update(l, mid, rt << , L, R);
if (R > mid) update(mid + , r, rt << | , L, R);
sum[rt] = (sum[rt << ] + sum[rt << | ]) % mod;
}
int query(int l,int r,int rt,int L,int R) {
if (L <= l && r <= R) return sum[rt];
if (tag[rt]) pushdown(rt, r - l + );
int mid = (l + r) >> , res = ;
if (L <= mid) res = (res + query(l, mid, rt << , L, R)) % mod;
if (R > mid) res = (res + query(mid + , r, rt << | , L, R)) % mod;
return res;
}
void dfs1(int u) {
siz[u] = ;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
dfs1(v);
siz[u] += siz[v];
if (!son[u] || siz[son[u]] < siz[v]) son[u] = v;
}
}
void dfs2(int u,int top) {
bel[u] = top;
xl[u] = ++Index;
if (!son[u]) return ;
dfs2(son[u], top);
for (int i = head[u]; i; i = e[i].nxt)
if (e[i].to != son[u]) dfs2(e[i].to, e[i].to);
}
void add(int x) {
while (x) {
update(, n, , xl[bel[x]], xl[x]);
x = fa[bel[x]];
}
}
int query(int x) {
int ans = ;
while (x) {
ans = (ans + query(, n, , xl[bel[x]], xl[x])) % mod;
x = fa[bel[x]];
}
return ans;
}
int main() {
n = read();int m = read();
for (int i = ; i <= n; ++i) {
fa[i] = read() + ;
add_edge(fa[i], i);
}
dfs1();
dfs2(, );
for (int i = ; i <= m; ++i) {
int l = read() + , r = read() + , z = read() + ;
Que[r].push_back(pa(z, i));
Que[l - ].push_back(pa(z, -i));
}
for (int i = ; i <= n; ++i) {
add(i);
for (int sz = Que[i].size(), j = ; j < sz; ++j) {
if (Que[i][j].second < ) ans[-Que[i][j].second] -= query(Que[i][j].first);
else ans[Que[i][j].second] += query(Que[i][j].first);
}
}
for (int i = ; i <= m; ++i) printf("%d\n", (ans[i] + mod) % mod);
return ;
}
P4211 [LNOI2014]LCA的更多相关文章
- P4211 [LNOI2014]LCA LCT
P4211 [LNOI2014]LCA 链接 loj luogu 思路 多次询问\(\sum\limits_{l \leq i \leq r}dep[LCA(i,z)]\) 可以转化成l到r上的点到根 ...
- 洛谷 P4211 [LNOI2014]LCA 解题报告
[LNOI2014]LCA 题意 给一个\(n(\le 50000)\)节点的有根树,询问\(l,r,z\),求\(\sum_{l\le i\le r}dep[lca(i,z)]\) 一直想启发式合并 ...
- 洛谷 P4211 [LNOI2014]LCA (树链剖分+离线)
题目:https://www.luogu.org/problemnew/solution/P4211 相当难的一道题,其思想难以用言语表达透彻. 对于每个查询,区间[L,R]中的每个点与z的lca肯定 ...
- Luogu P4211 [LNOI2014]LCA
我去这道题的Luogu评级是假的吧,这都算黑题. 我们首先考虑把操作离线不强制在线的题目离线一下一般都要方便些 考虑差分,我们用\(f(x)\)表示\([1,x]\)之间的点与\(z\)的答案,那么显 ...
- 并不对劲的bzoj3626:loj2558:p4211:[LNOI2014]LCA
题目大意 有一棵有\(n\)(\(n\leq5*10^4\))个点的树,\(q\)(\(q\leq5*10^4\))次询问,每次给出\(l,r,x\)表示询问所有编号在\([l,r]\)的点与点\(x ...
- 洛谷$P4211\ [LNOI2014]\ LCA$ 树链剖分+线段树
正解:树剖+线段树 解题报告: 传送门$QwQ$ 看到$dep[lca]$啥的就想到之前托腮腮$CSP$模拟$D1T3$的那个套路,,, 然后试下这个想法,于是$dep[lca(x,y)]=\sum_ ...
- [火星补锅] 非确定性有穷状态决策自动机练习题Vol.3 T3 && luogu P4211 [LNOI2014]LCA 题解
前言: 这题感觉还是很有意思.离线思路很奇妙.可能和二次离线有那么一点点相似?当然我不会二次离线我就不云了. 解析: 题目十分清真. 求一段连续区间内的所有点和某个给出的点的Lca的深度和. 首先可以 ...
- BZOJ 3626: [LNOI2014]LCA [树链剖分 离线|主席树]
3626: [LNOI2014]LCA Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2050 Solved: 817[Submit][Status ...
- bzoj 3626 [LNOI2014]LCA(离线处理+树链剖分,线段树)
3626: [LNOI2014]LCA Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1272 Solved: 451[Submit][Status ...
随机推荐
- 使用eclipse遇到的unable to install breakpoint的问题
调试一个tomcat工程,设置好断点,启动工程,结果出现了下面的错误: 继续运行,再进入断点之前,还会再度提示,但是最终会命中断点. 使用CGLIB查找关键字,了解到CGLIB是一个AOP的拦截库,想 ...
- NSMapTable、NSHashTable与NSPointerArray的封装
NSMapTable.NSHashTable与NSPointerArray的封装 说明 NSMapTable对应NSDictionary:NSHashTable对应NSSet:NSPointerArr ...
- 解析UIControl
解析UIControl 从下图可以看出,UIControl继承自UIView,添加了响应事件功能. UIButton之所以能响应各种各样的事件是因为继承自UIControl 使用UIControl可以 ...
- Zabbix日常监控(win_agent方式)
参考博文:https://www.cnblogs.com/xqzt/p/5130469.html https://www.cnblogs.com/zoulongbin/p/6395047.html 本 ...
- [2018HN省队集训D1T3] Or
[2018HN省队集训D1T3] Or 题意 给定 \(n\) 和 \(k\), 求长度为 \(n\) 的满足下列条件的数列的数量模 \(998244353\) 的值: 所有值在 \([1,2^k)\ ...
- 题解 P1868 【饥饿的奶牛】
题目链接:P1868 饥饿的奶牛 题面 有一条奶牛冲出了围栏,来到了一处圣地(对于奶牛来说),上面用牛语写着一段文字. 现用汉语翻译为: 有N个区间,每个区间x,y表示提供的x~y共y-x+1堆优质牧 ...
- YBB.DBUtils用法
通用数据访问类库,兼容ADO.ADO.NET方式访问. 利用ProviderFactory工厂方法,支持Oracle(不需要安装客户端).SQL Server.OleDb和ODBC等数据库访问. ht ...
- 以太坊系列之一: 以太坊RLP用法-以太坊源码学习
RLP (递归长度前缀)提供了一种适用于任意二进制数据数组的编码,RLP已经成为以太坊中对对象进行序列化的主要编码方式.RLP的唯一目标就是解决结构体的编码问题:对原子数据类型(比如,字符串,整数型, ...
- Java 输入输出流总结
1. 运用BufferedInputStream 读取文件流和BufferedOutputStream写文件流: protected static void writeFile2(String inp ...
- B/S网络概述
B/S网络架构 随着Web2.0时代的到来,互联网的网络架构已经从传统的C/S架构转变到更加方便快捷的B/S架构.这样的转化简化了人们上网的方式,也加速了互联网行业的发展. B/S架构的好处: 1.客 ...