CF1009F Dominant Indices 解题报告
CF1009F Dominant Indices
题意简述
给出一颗以\(1\)为跟的有根树,定义\(d_{i,j}\)为以\(i\)为根节点的子树中到\(i\)的距离恰好为\(j\)的点的个数,对每个点求出一个最小的\(j\)使得\(d_{i,j}\)最大
这个长链剖分的小trick感觉和树上分组背包的复杂度有点神似啊,据说和dsu on tree也有点像?
暴力的\(dp_{i,j}\)代表与\(i\)点相距为\(j\)的点的个数,复杂度\(O(n^2)\)
对每个点按重量维护重儿子,然后每个点直接继承重儿子的信息,暴力合并轻儿子的信息,这样每个点的信息只会在重链链头的父亲被合并一次,复杂度\(O(n)\)
关于继承重儿子,我抄了个很厉害的指针写法。注意要格外在意是不是访问了不该访问的空间。
Code:
#include <cstdio>
const int N=1e6+10;
int max(int x,int y){return x>y?x:y;}
int head[N],to[N<<1],Next[N<<1],cnt;
void add(int u,int v)
{
to[++cnt]=v,Next[cnt]=head[u],head[u]=cnt;
}
int dis[N],ws[N],ans[N],n;
void dfsinit(int now,int fa)
{
dis[now]=1;
for(int v,i=head[now];i;i=Next[i])
if((v=to[i])!=fa)
{
dfsinit(v,now);
if(dis[ws[now]]<dis[v]) ws[now]=v;
dis[now]=max(dis[now],dis[v]+1);
}
}
int sav[N],*it=sav,*dp[N];
void dfs(int now,int fa)
{
dp[now][0]=1;
if(ws[now]) dp[ws[now]]=dp[now]+1,dfs(ws[now],now),ans[now]=ans[ws[now]]+1;
for(int v,i=head[now];i;i=Next[i])
if((v=to[i])!=fa&&v!=ws[now])
{
dp[v]=it,it+=dis[v];
dfs(v,now);
for(int j=1;j<=dis[v];j++)
{
dp[now][j]+=dp[v][j-1];
if((j>ans[now]&&dp[now][j]>dp[now][ans[now]])||(j<ans[now]&&dp[now][j]>=dp[now][ans[now]]))
ans[now]=j;
}
}
if(dp[now][ans[now]]==1) ans[now]=0;
}
int main()
{
scanf("%d",&n);
for(int u,v,i=1;i<n;i++) scanf("%d%d",&u,&v),add(u,v),add(v,u);
dfsinit(1,0);
dp[1]=it,it+=dis[1];
dfs(1,0);
for(int i=1;i<=n;i++) printf("%d\n",ans[i]);
return 0;
}
2018.12.13
CF1009F Dominant Indices 解题报告的更多相关文章
- [CF1009F] Dominant Indices (+dsu on tree详解)
这道题用到了dsu(Disjoint Set Union) on tree,树上启发式合并. 先看了CF的官方英文题解,又看了看zwz大佬的题解,差不多理解了dsu on tree的算法. 但是时间复 ...
- CF1009F Dominant Indices(树上DSU/长链剖分)
题目大意: 就是给你一棵以1为根的树,询问每一个节点的子树内节点数最多的深度(相对于这个子树根而言)若有多解,输出最小的. 解题思路: 这道题用树链剖分,两种思路: 1.树上DSU 首先想一下最暴力的 ...
- CF1009F Dominant Indices(启发式合并)
You are given a rooted undirected tree consisting of nn vertices. Vertex 11 is the root. Let's denot ...
- CF1009F Dominant Indices
传送门 还是放个链接让泥萌去学一下把 orzYYB 题目中要求的\(f_{x,j}\),转移是\(f_{x,j}=\sum_{y=son_x} f_{y,j-1}\),所以这个东西可以用长链剖分优化, ...
- CF1009F Dominant Indices——长链剖分优化DP
原题链接 \(EDU\)出一道长链剖分优化\(dp\)裸题? 简化版题意 问你每个点的子树中与它距离为多少的点的数量最多,如果有多解,最小化距离 思路 方法1. 用\(dsu\ on\ tree\)做 ...
- CF1009F Dominant Indices 长链剖分
题目传送门 https://codeforces.com/contest/1009/problem/F 题解 长链剖分的板子吧. 令 \(dp[x][i]\) 表示 \(x\) 的子树中的深度为 \( ...
- 【CF1009F】Dominant Indices(长链剖分)
[CF1009F]Dominant Indices(长链剖分) 题面 洛谷 CF 翻译: 给定一棵\(n\)个点,以\(1\)号点为根的有根树. 对于每个点,回答在它子树中, 假设距离它为\(d\)的 ...
- LeetCode 1 Two Sum 解题报告
LeetCode 1 Two Sum 解题报告 偶然间听见leetcode这个平台,这里面题量也不是很多200多题,打算平时有空在研究生期间就刷完,跟跟多的练习算法的人进行交流思想,一定的ACM算法积 ...
- LeetCode - 167. Two Sum II - Input array is sorted - O(n) - ( C++ ) - 解题报告
1.题目大意 Given an array of integers that is already sorted in ascending order, find two numbers such t ...
随机推荐
- PHPCMS 栏目添加字段和修改描述textarea变成fceditor编辑器
一.添加字段方法: 1. 添加数据库字段:description1,添加位置:v9_catetory表 找到phpcms/moudles/admin/templates/category_add.tp ...
- hive的优化
hive.optimize.cp=true:列裁剪hive.optimize.prunner:分区裁剪hive.limit.optimize.enable=true:优化LIMIT n语句hive.l ...
- Netty源码分析第3章(客户端接入流程)---->第1节: 初始化NioSockectChannelConfig
Netty源码分析第三章: 客户端接入流程 概述: 之前的章节学习了server启动以及eventLoop相关的逻辑, eventLoop轮询到客户端接入事件之后是如何处理的?这一章我们循序渐进, 带 ...
- Teamproject Week7 --Scrum Meeting #1 2014.10.28
这是团队的第一次会议,具体议题如下: 1)我们明确了团队成员的职责所需: PM职责:根据项目范围.质量.时间与成本的综合因素的考虑,进行项目的总体规划与阶段计划. 控制项目组各成员的工作进度,即时了 ...
- 团队博客作业Week4 --- 学霸网站--NABC
1.需求(Need) 伴随着经济的发展,科学技术取得了飞速的发展,互联网在各行各业的发展中取得了广泛的应用.随着这些事物的发展,我们每个人都会接触到相当庞大的数据.如何在这些数据中找到自己需要的,如何 ...
- android随机运算器开发小结1
想到第一天自己写了一个简单的四则运算程序的情景:我便想起了引起我们不断迭代开发的程序背景是:二柱子接受老师安排的给孩子出题的任务,每次需要给孩子设置出题任务,生成相应的小学运算题目,所以我们面对的需求 ...
- Math 类的使用(一小部分)
package com.Date.Math; /* Math 数学类, 主要是提供了很多的数学公式. abs(double a) 获取绝对值 ceil(double a) 向上取整 floor(dou ...
- caffe with anaconda
https://blog.csdn.net/u013498583/article/details/74231058 https://www.cnblogs.com/youxin/p/4073703.h ...
- STL的集合set
集合: 集合是由元素组成的一个类,其成员可以是一个集合,也可以是一个原子,通常一个元素在一个集合中不能多次出现:由于对实现集合不是很理解,只简单写下已有的STL中的set集合使用: C++中set基本 ...
- CAS (1) —— Mac下配置CAS到Tomcat(服务端)
CAS (1) -- Mac下配置CAS到Tomcat(服务端) tomcat版本: tomcat-8.0.29 jdk版本: jdk1.8.0_65 cas版本: cas4.1.2 cas-clie ...