Description

给你一个无向带权连通图,每条边是黑色或白色。让你求一棵最小权的恰好有need条白色边的生成树。

题目保证有解。

Input

第一行V,E,need分别表示点数,边数和需要的白色边数。

接下来E行,每行s,t,c,col表示这边的端点(点从0开始标号),边权,颜色(0白色1黑色)。

Output

一行表示所求生成树的边权和。

V<=50000,E<=100000,所有数据边权为[1,100]中的正整数。

Sample Input

2 2 1

0 1 1 1

0 1 2 0

Sample Output

2


先跑一遍最小生成树发现选到的白边数和need是有差距的

把白边的大小整体上移或下移是对的

二分偏移量check白边选择量即可

*注意优先选白边


#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std; int i,m,n,j,k,need,l=-150,r=150,tmp,f[100001]; struct vv
{
int x,y,z,c;
} a[1000001]; bool cmp(vv a,vv b) {return a.z==b.z? a.c<b.c:a.z<b.z; } int find(int x)
{
if(f[x]==x) return x;
f[x]=find(f[x]);
return f[x];
} int check(int x)
{
int ans=0; k=0;
for(int i=1;i<=m;i++) if(!a[i].c) a[i].z+=x;
for(int i=0;i<=n;i++) f[i]=i;
sort(a+1,a+1+m,cmp);
for(int i=1;i<=m;i++)
{
if(find(a[i].x)!=find(a[i].y))
{
k+=a[i].z;
if(!a[i].c) ans+=1;
f[f[a[i].x]]=f[a[i].y];
}
}
for(int i=1;i<=m;i++) if(!a[i].c) a[i].z-=x;
return ans;
} int main()
{
scanf("%d%d%d",&n,&m,&need);
for(i=1;i<=m;i++)
scanf("%d%d%d%d",&a[i].x,&a[i].y,&a[i].z,&a[i].c);
while(l<=r)
{
int mid=(l+r)>>1;
if(check(mid)>=need) tmp=mid, l=mid+1;
else r=mid-1;
}
check(tmp);
printf("%d",k-tmp*need);
}

P2619 [国家集训队2]Tree I的更多相关文章

  1. luogu P2619 [国家集训队2]Tree I

    题目链接 luogu P2619 [国家集训队2]Tree I 题解 普通思路就不说了二分增量,生成树check 说一下坑点 二分时,若黑白边权有相同,因为权值相同优先选白边,若在最有增量时出现黑白等 ...

  2. P2619 [国家集训队2]Tree I(最小生成树+二分)

    P2619 [国家集训队2]Tree I 每次二分一个$x$,每条白边加上$x$,跑最小生成树 统计一下满足条件的最小值就好了. to me:注意二分不要写挂 #include<iostream ...

  3. Luogu P2619 [国家集训队2]Tree I(WQS二分+最小生成树)

    P2619 [国家集训队2]Tree I 题意 题目描述 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有\(need\)条白色边的生成树. 题目保证有解. 输入输出格式 输入格式 ...

  4. 洛谷P2619 [国家集训队2]Tree I(带权二分,Kruscal,归并排序)

    洛谷题目传送门 给一个比较有逼格的名词--WQS二分/带权二分/DP凸优化(当然这题不是DP). 用来解决一种特定类型的问题: 有\(n\)个物品,选择每一个都会有相应的权值,需要求出强制选\(nee ...

  5. Luogu P2619 [国家集训队2]Tree I 凸优化,wqs二分

    新学的科技.设\(f(x)\)为选\(x\)条白色边的时候的最小生成树权值和,那么可以猜到它应该是一个下凸函数的形式. 如图,图中\(x\)坐标表示选的白色边条数,\(y\)坐标表示获得的权值,那么我 ...

  6. p2619 [国家集训队2]Tree I [wqs二分学习]

    分析 https://www.cnblogs.com/CreeperLKF/p/9045491.html 反正这个博客看起来很nb就对了 但是不知道他在说啥 实际上wqs二分就是原来的值dp[x]表示 ...

  7. [国家集训队2012]tree(陈立杰)

    [国家集训队2012]tree(陈立杰) 题目 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树.题目保证有解. INPUT 第一行V,E,need分别表示 ...

  8. 题解【洛谷P2619】[国家集训队2]Tree I

    题目描述 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有\(need\)条白色边的生成树. 题目保证有解. 输入输出格式 输入格式 第一行\(V,E,need\)分别表示点数,边 ...

  9. [国家集训队2012]tree(陈立杰) 题解(二分+最小生成树)

    tree 时间限制: 3 Sec  内存限制: 512 MB 题目描述 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. 输入 第一行V, ...

随机推荐

  1. [日常] nginx访问频率限制

    去年的事,随便记记 ========================================================================= 2017年3月15日 记录: n ...

  2. 浅谈一致性哈希(My转)

    一致性哈希(Consistent hashing)算法是由 MIT 的Karger 等人与1997年在一篇学术论文(<Consistent hashing and random trees: d ...

  3. 【 js 片段 】如何组织表单的默认提交?【亲测有效】

    最近做的一个项目,我分到的部分有表单验证.点击了提交按钮,但我并不想让他跳转页面去提交.于是经过各种百度,各种 stackoverflow,各种抱大神腿之后,有了以下解决办法: 重点就是阻止 form ...

  4. 给model模型传数组参数

    $res = $this->Company->companyDischarge($this->user_id,array(0=>'c.limit_sum>0',1=> ...

  5. Android 使用全局变量的问题

    现在每天都在忙,而且一忙起来,就把写笔记的事情放在了后面,最近在写程序的时候,突然要使用全局变量,就按照以前的方式,写了一个类,然后把变量都声明为静态变量,然后做为全局变量使用,但是在进行Activi ...

  6. Linux安装配置mysql

    1.假设已经有mysql-5.5.10.tar.gz以及cmake-2.8.4.tar.gz两个源文件 (1)先安装cmake(mysql5.5以后是通过cmake来编译的) [root@ rhel5 ...

  7. cf444E. DZY Loves Planting(并查集)

    题意 题目链接 Sol 神仙题啊Orzzzzzz 考场上的时候直接把树扔了对着式子想,想1h都没得到啥有用的结论. 然后cf正解居然是网络流??出给NOIP模拟赛T1???¥%--&((--% ...

  8. javascript数组元素全排列

    多个数组(数量不定)例如三个数组 {a,b} {1,2} {d}排列组合后为a,1,da,2,db,1,db,2,d是js的算法哦 var arr = [["a","b& ...

  9. gulp实用配置(1)——demo

    在React和Vue推进下,现在很多人都在使用webpack作为自动化构建工具,但其实在很多时候我们并不是一定需要用到它,gulp这样的轻量级构建工具就足够了. 最近一段时间不是太忙,所以就写了三份配 ...

  10. thinkPHP3.2.2 控制器内跳转的三种方式

    public function jump() { $obj = new TestController(); $obj->logged(); } public function jump1() { ...