Buy Low, Buy Lower

The advice to "buy low" is half the formula to success in the stock market. But to be considered a great investor you must also follow this problems' advice:

"Buy low, buy lower"

That is, each time you buy a stock, you must purchase more at a lower price than the previous time you bought it. The more times you buy at a lower price than before, the better! Your goal is to see how many times you can continue purchasing at ever lower prices.

You will be given the daily selling prices of a stock over a period of time. You can choose to buy stock on any of the days. Each time you choose to buy, the price must be lower than the previous time you bought stock. Write a program which identifies which days you should buy stock in order to maximize the number of times you buy.

By way of example, suppose on successive days stock is selling like this:

 Day   1  2  3  4  5  6  7  8  9 10 11 12
Price 68 69 54 64 68 64 70 67 78 62 98 87

In the example above, the best investor (by this problem, anyway) can buy at most four times if they purchase at a lower price each time. One four day sequence (there might be others) of acceptable buys is:

Day    2  5  6 10
Price 69 68 64 62

PROGRAM NAME: buylow

INPUT FORMAT

Line 1: N (1 <= N <= 5000), the number of days for which stock prices are available.
Line 2..etc: A series of N positive space-separated integers (which may require more than one line of data) that tell the price for that day. The integers will fit into 32 bits quite nicely.

SAMPLE INPUT (file buylow.in)

12
68 69 54 64 68 64 70 67
78 62 98 87

OUTPUT FORMAT

Two integers on a single line:

  • the length of the longest sequence of decreasing prices
  • the number of sequences that have this length

In counting the number of solutions, two potential solutions are considered the same (and would only count as one solution) if they repeat the same string of decreasing prices, that is, if they "look the same" when the successive prices are compared. Thus, two different sequence of "buy" days could produce the same string of decreasing prices and be counted as only a single solution.

SAMPLE OUTPUT (file buylow.out)

4 2

————————————————————————————————————————————————————————————
这道题乍一看似乎很水
然而……
好吧最长下降子序列可以n^2的求出但是我们还需要序列个数
用加法原理假如遇到a[j]>a[i](j<i) 且f[j]+1==f[i]我们就给计数器d数组d[i]+=d[j]
但这样肯定不是最后的答案,因为每个数的数字需要不一样,而不是下标不一样
用一个next数组记录距离j最近的一个和a[j]相等的数的下标,如果这个下标在i之前我们可以跳过j,如果没有或这个下标在i之后再进行计算,这样的话我们就可以囊括之前的情况并且避免重复计算了
在序列最后加一个0,最终答案就可以很容易的聚到最后一位上了
还有高精qwq
【是时候认认真真写个高精当模板了qwq】
 /*
ID:ivorysi
PROG:buylow
LANG:C++
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <set>
#include <vector>
#define inf 0x7fffffff
#define ivorysi
#define siji(i,x,y) for(int i=(x);i<=(y);++i)
#define gongzi(j,x,y) for(int j=(x);j>=(y);--j)
#define xiaosiji(i,x,y) for(int i=(x);i<(y);++i)
#define sigongzi(j,x,y) for(int j=(x);j>(y);--j)
using namespace std;
struct bignum {
vector<int> s;
bignum operator =(int x) {
s.clear();
do {
s.push_back(x%);
x/=;
}while(x>);
return *this;
}
bignum operator + (const bignum &b) const {
bignum c;
c.s.clear();
for(int g=,k=;;++k) {
if(g== && k>=b.s.size() && k>=s.size()) {break;}
int x=g;
if(k<b.s.size()) x+=b.s[k];
if(k<s.size()) x+=s[k];
c.s.push_back(x%);
g=x/;
}
return c;
}
bignum &operator +=(const bignum &b) {
*this=*this+b;
return *this;
}
}d[];
ostream& operator << (ostream &out, const bignum& x) {
gongzi(i,x.s.size()-,) {
out<<x.s[i];
}
return out;
}
int n,a[],f[],ans,ans1,next[];
void solve() {
scanf("%d",&n);
siji(i,,n) scanf("%d",&a[i]);
++n;
a[n]=;
siji(i,,n) {f[i]=;d[i]=;}
siji(i,,n) {
siji(j,i+,n) {
if(a[i]>a[j]) {
if(f[i]+>f[j]) {
f[j]=f[i]+;
}
}
}
}
siji(i,,n) {
siji(j,i+,n) {
if(a[i]==a[j]) {next[i]=j;break;}
}
}
siji(i,,n) {
if(f[i]==) d[i]=;
xiaosiji(j,,i) {
if(a[j]>a[i]) {
if(f[j]+==f[i] && (next[j]== || next[j]>i)) {
d[i]=d[i]+d[j];
}
}
}
}
printf("%d ",f[n]-);
cout<<d[n]<<endl;
}
int main(int argc, char const *argv[])
{
#ifdef ivorysi
freopen("buylow.in","r",stdin);
freopen("buylow.out","w",stdout);
#else
freopen("f1.in","r",stdin);
#endif
solve();
return ;
}

 

USACO 4.3 Buy Low, Buy Lower的更多相关文章

  1. USACO Section 4.3 Buy low,Buy lower(LIS)

    第一眼看到题目,感觉水水的,不就是最长下降子序列嘛!然后写……就呵呵了..要判重,还要高精度……判重我是在计算中加入各种判断.这道题比看上去麻烦一点,但其实还好吧.. #include<cstd ...

  2. poj1952 BUY LOW, BUY LOWER【线性DP】【输出方案数】

    BUY LOW, BUY LOWER Time Limit: 1000MS   Memory Limit: 30000K Total Submissions:11148   Accepted: 392 ...

  3. POJ 1952 BUY LOW, BUY LOWER 动态规划题解

    Description The advice to "buy low" is half the formula to success in the bovine stock mar ...

  4. POJ-1952 BUY LOW, BUY LOWER(线性DP)

    BUY LOW, BUY LOWER Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9244 Accepted: 3226 De ...

  5. 洛谷P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower

    P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower 题目描述 “逢低吸纳”是炒股的一条成功秘诀.如果你想成为一个成功的投资者,就要遵守这条秘诀: "逢低吸纳,越低越 ...

  6. [POJ1952]BUY LOW, BUY LOWER

    题目描述 Description The advice to "buy low" is half the formula to success in the bovine stoc ...

  7. Buy Low, Buy Lower

    Buy Low, Buy Lower 给出一个长度为N序列\(\{a_i\}\),询问最长的严格下降子序列,以及这样的序列的个数,\(1 <= N <= 5000\). 解 显然我们可以很 ...

  8. BUY LOW, BUY LOWER_最长下降子序列

    Description The advice to "buy low" is half the formula to success in the bovine stock mar ...

  9. Usaco 4.3.1 Buy Low, Buy Lower 逢低吸纳详细解题报告

    问题描述: "逢低吸纳"是炒股的一条成功秘诀.如果你想成为一个成功的投资者,就要遵守这条秘诀:  "逢低吸纳,越低越买"  这句话的意思是:每次你购买股票时的股 ...

随机推荐

  1. NGINX+TOMCAT实现反向代理

    环境说明 NGINX: 192.168.10.10 TOMCAT: 192.168.10.11 NGINX部分 [root@nginx ~]# wget http://nginx.org/downlo ...

  2. Mac下配置环境变量(转)

    说明:Mac下一般使用bash作为默认shell 一.Mac系统的环境变量,加载顺序为: /etc/profile /etc/paths ~/.bash_profile ~/.bash_login ~ ...

  3. Django 2.0.1 官方文档翻译: 文档目录 (Page 1)

    Django documentation contents 翻译完成后会做标记. 文档按照官方提供的内容一页一页的进行翻译,有些内容涉及到其他节的内容,会慢慢补上.所有的翻译内容按自己的理解来写,尽量 ...

  4. 经典幻灯片插件Swiper

    照着写的demo,搞清楚什么叫分页器Pagination,什么叫nav,搞清楚DOM结构,container,wrapper之类的,就能写了.效果掉渣天! <!DOCTYPE html> ...

  5. why inline functions must be put in header files?

    [why inline functions must be put in header files?] 编译中有2个过程:compile.link.先进行compile,compile中把源代码编译成 ...

  6. FPGA基础知识8(FPGA静态时序分析)

    任何学FPGA的人都跑不掉的一个问题就是进行静态时序分析.静态时序分析的公式,老实说很晦涩,而且总能看到不同的版本,内容又不那么一致,为了彻底解决这个问题,我研究了一天,终于找到了一种很简单的解读办法 ...

  7. 20155323 2016-2017-2 《Java程序设计》第7周学习总结

    20155323 2016-2017-2 <Java程序设计>第7周学习总结 使用Lambda语法来代替匿名的内部类,代码不仅简洁,而且还可读. 时间的度量:GMT.UT.TAI.UTC. ...

  8. 20155223 2016-2017-2 《Java程序设计》第7周学习总结

    20155223 2016-2017-2 <Java程序设计>第7周学习总结 教材学习内容总结 第十二章 Lambdo表达式下,任何参数的类型必须标明清楚:如果有目标类型的话,在编译程序可 ...

  9. [转]caffe中solver.prototxt参数说明

    https://www.cnblogs.com/denny402/p/5074049.html solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是so ...

  10. 基于NIO的同步非阻塞编程完整案例,客户端发送请求,服务端获取数据并返回给客户端数据,客户端获取返回数据

    这块还是挺复杂的,挺难理解,但是多练几遍,多看看研究研究其实也就那样,就是一个Selector轮询的过程,这里想要双向通信,客户端和服务端都需要一个Selector,并一直轮询, 直接贴代码: Ser ...