2D Circular Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual
1 Introduction
The goal of the circular kernel is to offer to the user a large set of functionalities on circles and circular arcs in the plane. All the choices (interface, robustness, representation, and so on) made here are consistent with the choices made in the CGAL kernel, for which we refer the user to the 2D kernel manual.
In this first release, all functionalities necessary for computing an arrangement of circular arcs and these line segments are defined. Three traits classes are provided for the CGAL arrangement package.
circular kernel 的目标是提供一个用于平面圆和圆弧的大量的函数集。本版中,所有计算圆弧和这些线段排列的函数全部提供。三个traits类提供给了这个CGAL的arrangement 包。
2 Software Design
The design is done in such a way that the algebraic concepts and the geometric concepts are clearly separated. Circular_kernel_2 has therefore two template parameters:
- the first parameter must model the CGAL three dimensional
Kernelconcept. The circular kernel derives from it, and it provides all elementary geometric objects like points, lines, circles, and elementary functionality on them. - the second parameter is the algebraic kernel, which is responsible for computations on polynomials and algebraic numbers. It has to be a model of concept
AlgebraicKernelForCircles. The robustness of the package relies on the fact that the algebraic kernel provides exact computations on algebraic objects.
The circular kernel uses the extensibility scheme presented in the 2D kernel manual (see Section Extensible Kernel). The types of Kernel are inherited by the circular kernel and some types are taken from the AlgebraicKernelForCircles parameter. Three new main geometric objects are introduced by Circular_kernel_2: circular arcs, points of circular arcs (used in particular for endpoints of arcs and intersection points between arcs) and line segments whose endpoints are points of this new type.
In fact, the circular kernel is documented as a concept, CircularKernel, and two models are provided:
Circular_kernel_2<Kernel,AlgebraicKernelForCircles>, the basic kernel,- and a predefined filtered kernel
Exact_circular_kernel_2, that is based on similar techniques asExact_predicates_exact_constructions_kernel.
设计将代数概念和几何概念截然分开,所以 Circular_kernel_2 类有两个模板参数:
第一个参数必须是CGAL 3 维 kernel概念的模型。本circular kernel 由此概念继承而来, 它提供了所有基本的几何体,包括点、线、圆和它们的基本方程。
第二个参数是代数内核(algebraic kernel),它负责计算多项式和代数数。它必须是AlgebraicKernelForCircles概念的模型。本包的健壮性依赖于代数内核提供的对代数对象的精确计算。
circular kernel 使用2D内核手册中提到的可扩展的scheme(see Section Extensible Kernel)。Kernel的类型由 circular kernel继承,有些类型来自于AlgebraicKernelForCircles参数。三个新的几何对象由 Circular_kernel_2引入:圆弧(circular arcs),圆弧的点(points of circular arcs,主要用于弧的端点和弧与弧的交点),和端点是圆弧上点的线段( line segments whose endpoints are points of this new type)。
实际上,circular kernel 是一个概念CircularKernel,它提供了2个模型:
Circular_kernel_2<Kernel,AlgebraicKernelForCircles>是基本内核
一个预先定义的过滤内核(filtered kernel)Exact_circular_kernel_2,它是基于与Exact_predicates_exact_constructions_kernel相似的技术。
3 Examples
The first example shows how to construct circles or circular arcs from points, and how to compute intersections between them using the global function.
这个例子展示如何创建一个弧,如何通过全局函数求弧的交点。
File Circular_kernel_2/intersecting_arcs.cpp
The following example shows how to use a functor of the kernel.
下面 例子演示如何使用内核中的一个函子。
File Circular_kernel_2/functor_has_on_2.cpp
4 Design and Implementation History
The first pieces of prototype code were comparisons of algebraic numbers of degree 2, written by Olivier Devillers [1],cgal:dfmt-amafe-02.
Some work was then done in the direction of a "kernel" for CGAL.[1] and the first design emerged in [2].
The code of this package was initially written by Sylvain Pion and Monique Teillaud who also wrote the manual. Athanasios Kakargias had worked on a prototype version of this kernel in 2003. Julien Hazebrouck participated in the implementation in July and August
- The contribution of Pedro Machado Manhães de Castro in summer 2006 improved significantly the efficiency of this kernel. He also added more functionality in 2008.
This work was partially supported by the IST Programme of the EU as a Shared-cost RTD (FET Open) Project under Contract No IST-2000-26473 (ECG - Effective Computational Geometry for Curves and Surfaces) and by the IST Programme of the 6th Framework Programme of the EU as a STREP (FET Open Scheme) Project under Contract No IST-006413 (ACS - Algorithms for Complex Shapes).
2D Circular Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual的更多相关文章
- 2D and 3D Linear Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual
1 Introduction CGAL, the Computational Geometry Algorithms Library, is written in C++ and consists o ...
- 3D Spherical Geometry Kernel( Geometry Kernels) CGAL 4.13 -User Manual
Introduction The goal of the 3D spherical kernel is to offer to the user a large set of functionalit ...
- dD Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual
1 Introduction This part of the reference manual covers the higher-dimensional kernel. The kernel co ...
- 2D Convex Hulls and Extreme Points( Convex Hull Algorithms) CGAL 4.13 -User Manual
1 Introduction A subset S⊆R2 is convex if for any two points p and q in the set the line segment wit ...
- Algebraic Foundations ( Arithmetic and Algebra) CGAL 4.13 -User Manual
理解: 本节主要介绍CGAL的代数结构和概念之间的互操作.与传统数论不同,CGAL的代数结构关注于实数轴的“可嵌入”特征.它没有将所有传统数的集合映射到自己的代数结构概念中,避免使用“数的类型”这一术 ...
- 2D Polygons( Poygon) CGAL 4.13 -User Manual
1 Introduction A polygon is a closed chain of edges. Several algorithms are available for polygons. ...
- Algebraic Kernel ( Arithmetic and Algebra) CGAL 4.13 -User Manual
1 Introduction Real solving of polynomials is a fundamental problem with a wide application range. T ...
- Linear and Quadratic Programming Solver ( Arithmetic and Algebra) CGAL 4.13 -User Manual
1 Which Programs can be Solved? This package lets you solve convex quadratic programs of the general ...
- Monotone and Sorted Matrix Search ( Arithmetic and Algebra) CGAL 4.13 -User Manual
monotone_matrix_search() and sorted_matrix_search() are techniques that deal with the problem of eff ...
随机推荐
- QFileInfo
https://www.cnblogs.com/findumars/p/10247573.html
- RNA分析要点
1. 有参与无参转录组分析 2. lncRNA分析 以RNA-Seq测序技术为基础的转录组测序作为高通量测序时代核心技术之一,已在生物科学及医学领域前沿研究中获得广泛应用.RNA-Seq可进行全基因组 ...
- 2018.10.12 NOIP模拟 数据结构(线段树)
传送门 sb线段树题居然还卡常. 修改操作直接更新区间最小值和区间标记下传即可. 询问加起来最多5e65e65e6个数. 因此直接询问5e65e65e6次最小值就行了. 代码
- 2018.08.21 bzoj4668: 冷战(并查集+启发式合并)
传送门 可以发现需要维护连通性和两点连通时间. 前者显然是并查集的常规操作,关键就在于如何维护两点的连通时间. 然后会想到这个时候不能用路径压缩了,因为它会破坏原本树形集合的结构,因此可以启发式按si ...
- 2018.08.14 bzoj4241: 历史研究(回滚莫队)
传送们 简单的回滚莫队,调了半天发现排序的时候把m达成了n... 代码: #include<bits/stdc++.h> #define N 100005 #define ll long ...
- asp.net web api 安装swagger
使用nuget控制台, 输入 Install-Package Swashbuckle,回车,等待安装引用.nuget国内没有镜像,安装比较慢 安装成功后会多出一个引用 右键工程点--属性,左边导航栏选 ...
- APMServ—优秀的PHP集成环境工具
经常折腾wordpress和各种php开发的cms,免不了要在本地测试这些程序,所以选择一款好的php集成环境就至关重要啦.之前在月光博客上看到有一篇“常见的WAMP集成环境”介绍,然后先后试用过XA ...
- 使用bat批处理文件备份mysql数据库
@echo offset date_string=%date:~0,4%_%date:~5,2%_%date:~8,2% //日期set time_string=%time:~0,2%_%time: ...
- HDU 2719 The Seven Percent Solution (水题。。。)
题意:把字符串中的一些特殊符号用给定的字符串代替. 析:没的说. 代码如下: #include <iostream> #include <cstdio> #include &l ...
- LA 3602 DNA Consensus String (暴力枚举)
题意:给定m个长度为n的DNA序列,求一个最短的DNA序列,使得总Hamming距离最小. Hamming距离等于字符不同的位置个数. 析:看到这个题,我的第一感觉是算时间复杂度,好小,没事,完全可以 ...