1 Introduction

The goal of the circular kernel is to offer to the user a large set of functionalities on circles and circular arcs in the plane. All the choices (interface, robustness, representation, and so on) made here are consistent with the choices made in the CGAL kernel, for which we refer the user to the 2D kernel manual.

In this first release, all functionalities necessary for computing an arrangement of circular arcs and these line segments are defined. Three traits classes are provided for the CGAL arrangement package.

circular kernel 的目标是提供一个用于平面圆和圆弧的大量的函数集。本版中,所有计算圆弧和这些线段排列的函数全部提供。三个traits类提供给了这个CGAL的arrangement 包。

2 Software Design

The design is done in such a way that the algebraic concepts and the geometric concepts are clearly separated. Circular_kernel_2 has therefore two template parameters:

  • the first parameter must model the CGAL three dimensional Kernel concept. The circular kernel derives from it, and it provides all elementary geometric objects like points, lines, circles, and elementary functionality on them.
  • the second parameter is the algebraic kernel, which is responsible for computations on polynomials and algebraic numbers. It has to be a model of concept AlgebraicKernelForCircles. The robustness of the package relies on the fact that the algebraic kernel provides exact computations on algebraic objects.

The circular kernel uses the extensibility scheme presented in the 2D kernel manual (see Section Extensible Kernel). The types of Kernel are inherited by the circular kernel and some types are taken from the AlgebraicKernelForCircles parameter. Three new main geometric objects are introduced by Circular_kernel_2: circular arcs, points of circular arcs (used in particular for endpoints of arcs and intersection points between arcs) and line segments whose endpoints are points of this new type.

In fact, the circular kernel is documented as a concept, CircularKernel, and two models are provided:

设计将代数概念和几何概念截然分开,所以 Circular_kernel_2 类有两个模板参数:

  第一个参数必须是CGAL 3 维 kernel概念的模型。本circular kernel 由此概念继承而来, 它提供了所有基本的几何体,包括点、线、圆和它们的基本方程。

  第二个参数是代数内核(algebraic kernel),它负责计算多项式和代数数。它必须是AlgebraicKernelForCircles概念的模型。本包的健壮性依赖于代数内核提供的对代数对象的精确计算。

circular kernel 使用2D内核手册中提到的可扩展的scheme(see Section Extensible Kernel)。Kernel的类型由 circular kernel继承,有些类型来自于AlgebraicKernelForCircles参数。三个新的几何对象由 Circular_kernel_2引入:圆弧(circular arcs),圆弧的点(points of circular arcs,主要用于弧的端点和弧与弧的交点),和端点是圆弧上点的线段( line segments whose endpoints are points of this new type)。

实际上,circular kernel 是一个概念CircularKernel,它提供了2个模型:

  Circular_kernel_2<Kernel,AlgebraicKernelForCircles>是基本内核

  一个预先定义的过滤内核(filtered kernel)Exact_circular_kernel_2,它是基于与Exact_predicates_exact_constructions_kernel相似的技术。

3 Examples

The first example shows how to construct circles or circular arcs from points, and how to compute intersections between them using the global function.

这个例子展示如何创建一个弧,如何通过全局函数求弧的交点。

File Circular_kernel_2/intersecting_arcs.cpp

#include <CGAL/Exact_circular_kernel_2.h>
#include <CGAL/point_generators_2.h>
 
typedef CGAL::Exact_circular_kernel_2 Circular_k;
 
typedef CGAL::Point_2<Circular_k> Point_2;
typedef CGAL::Circle_2<Circular_k> Circle_2;
typedef CGAL::Circular_arc_2<Circular_k> Circular_arc_2;
 
template <typename T>
double prob_2() {
CGAL::Random_points_in_square_2<Point_2> g(1.0);
double prob = 0.0;
for (int i = 0; i < 10000; i++) {
 
Point_2 p1, p2, p3, p4, p5, p6;
p1 = *g++; p2 = *g++; p3 = *g++;
p4 = *g++; p5 = *g++; p6 = *g++;
 
// the pi's are points inherited from the Cartesian kernel Point_2, so,
// the orientation predicate can be called on them
if(CGAL::orientation(p1, p2, p3) != CGAL::COUNTERCLOCKWISE) std::swap(p1, p3);
T o1 = T(p1, p2, p3);
if(CGAL::orientation(p4, p5, p6) != CGAL::COUNTERCLOCKWISE) std::swap(p4, p6);
T o2 = T(p4, p5, p6);
 
typedef typename CGAL::CK2_Intersection_traits<Circular_k, T, T>::type
Intersection_result;
std::vector<Intersection_result> res;
CGAL::intersection(o1, o2, std::back_inserter(res));
 
prob += (res.size() != 0) ? 1.0 : 0.0;
}
return prob/10000.0;
}
 
int main()
{
std::cout << "What is the probability that two arcs formed by" << std::endl;
std::cout << "three random counterclockwise-oriented points on" << std::endl;
std::cout << "an unit square intersect? (wait a second please)" << std::endl;
std::cout << "The probability is: " << prob_2<Circular_arc_2>() <<
std::endl << std::endl;
 
std::cout << "And what about the probability that two circles formed by"
<< std::endl;
std::cout << "three random counterclockwise-oriented points on" << std::endl;
std::cout << "an unit square intersect? (wait a second please)" << std::endl;
std::cout << "The probability is: " << prob_2<Circle_2>() << std::endl;
return 0;
}
 
 

The following example shows how to use a functor of the kernel.

下面 例子演示如何使用内核中的一个函子。

File Circular_kernel_2/functor_has_on_2.cpp

#include <CGAL/Exact_circular_kernel_2.h>
#include <CGAL/point_generators_2.h>
 
typedef CGAL::Exact_circular_kernel_2 Circular_k;
 
typedef CGAL::Point_2<Circular_k> Point_2;
typedef CGAL::Circular_arc_2<Circular_k> Circular_arc_2;
 
int main()
{
int n = 0;
Circular_arc_2 c = Circular_arc_2(Point_2(10,0), Point_2(5,5), Point_2(0, 0));
 
for(int i = 0; i <= 10; i++) {
for(int j = 0; j <= 10; j++) {
Point_2 p = Point_2(i, j);
if(Circular_k().has_on_2_object()(c,p)) {
n++;
std::cout << "(" << i << "," << j << ")" << std::endl;
}
}
}
std::cout << "There are " << n << " points in the [0,..,10]x[0,..,10] "
<< "grid on the circular" << std::endl
<< " arc defined counterclockwisely by the points (0,0), (5,5), (10,0)"
<< std::endl << "See the points above." << std::endl;
return 0;
}

4 Design and Implementation History

The first pieces of prototype code were comparisons of algebraic numbers of degree 2, written by Olivier Devillers [1],cgal:dfmt-amafe-02.

Some work was then done in the direction of a "kernel" for CGAL.[1] and the first design emerged in [2].

The code of this package was initially written by Sylvain Pion and Monique Teillaud who also wrote the manual. Athanasios Kakargias had worked on a prototype version of this kernel in 2003. Julien Hazebrouck participated in the implementation in July and August

  1. The contribution of Pedro Machado Manhães de Castro in summer 2006 improved significantly the efficiency of this kernel. He also added more functionality in 2008.

This work was partially supported by the IST Programme of the EU as a Shared-cost RTD (FET Open) Project under Contract No IST-2000-26473 (ECG - Effective Computational Geometry for Curves and Surfaces) and by the IST Programme of the 6th Framework Programme of the EU as a STREP (FET Open Scheme) Project under Contract No IST-006413 (ACS - Algorithms for Complex Shapes).

    1. ^Monique Teillaud, First Prototype of a CGAL Geometric Kernel with Circular Arcs, Technical Report ECG-TR-182203-01, 2002 Sylvain Pion and Monique Teillaud, Towards a CGAL-like kernel for curves, Technical Report ECG-TR-302206-01, 2003

2D Circular Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual的更多相关文章

  1. 2D and 3D Linear Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual

    1 Introduction CGAL, the Computational Geometry Algorithms Library, is written in C++ and consists o ...

  2. 3D Spherical Geometry Kernel( Geometry Kernels) CGAL 4.13 -User Manual

    Introduction The goal of the 3D spherical kernel is to offer to the user a large set of functionalit ...

  3. dD Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual

    1 Introduction This part of the reference manual covers the higher-dimensional kernel. The kernel co ...

  4. 2D Convex Hulls and Extreme Points( Convex Hull Algorithms) CGAL 4.13 -User Manual

    1 Introduction A subset S⊆R2 is convex if for any two points p and q in the set the line segment wit ...

  5. Algebraic Foundations ( Arithmetic and Algebra) CGAL 4.13 -User Manual

    理解: 本节主要介绍CGAL的代数结构和概念之间的互操作.与传统数论不同,CGAL的代数结构关注于实数轴的“可嵌入”特征.它没有将所有传统数的集合映射到自己的代数结构概念中,避免使用“数的类型”这一术 ...

  6. 2D Polygons( Poygon) CGAL 4.13 -User Manual

    1 Introduction A polygon is a closed chain of edges. Several algorithms are available for polygons. ...

  7. Algebraic Kernel ( Arithmetic and Algebra) CGAL 4.13 -User Manual

    1 Introduction Real solving of polynomials is a fundamental problem with a wide application range. T ...

  8. Linear and Quadratic Programming Solver ( Arithmetic and Algebra) CGAL 4.13 -User Manual

    1 Which Programs can be Solved? This package lets you solve convex quadratic programs of the general ...

  9. Monotone and Sorted Matrix Search ( Arithmetic and Algebra) CGAL 4.13 -User Manual

    monotone_matrix_search() and sorted_matrix_search() are techniques that deal with the problem of eff ...

随机推荐

  1. [leetcode]283. Move Zeroes移零

    Given an array nums, write a function to move all 0's to the end of it while maintaining the relativ ...

  2. oracle基本查询入门(一)

    一.基本select语句 SELECT *|{[DISTINCT] column|expression [alias], ...} FROM table; 例如: --查询所有数据 select * ...

  3. Visual Studio宏

    MSVC++ 14.0 _MSC_VER == 1900 (Visual Studio 2015)MSVC++ 12.0 _MSC_VER == 1800 (Visual Studio 2013)MS ...

  4. geoserver 问题解决

    GeoServer的8080端口被占用了怎么办?如何修改GeoServer的端口? GeoServer管理页面的登陆地址正常情况下为:http://localhost:8080/geoserver/w ...

  5. 技术管理zz

    1.管理者最重要的是规划Roadmap 技术管理者并不能完全脱离技术.最少要把握最新技术的发展,了解团队当前技术现状和不足.用于规划的时间应该不少于50%的工作时间.具体而言,规划又分为业务规划和团队 ...

  6. RESTful Web API 实践

    REST 概念来源 网络应用程序,分为前端和后端两个部分.当前的发展趋势,就是前端设备层出不穷(手机.平板.桌面电脑.其他专用设备...). 因此,必须有一种统一的机制,方便不同的前端设备与后端进行通 ...

  7. hdu-2844(完全背包+二进制优化模板)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2844 思路:问1-m能的得到的硬币的值,所以dp[i]==i即可. #include<iostr ...

  8. python操作数据库-数据表

    数据表: 数据类型: 帮助的三种形式: 在cmd中输入: help 要帮助的主题词,或 ? 要帮助的主题词 或  \h 要帮助的主题词 . 数据表的创建: CREATE database IF NOT ...

  9. HDU 2138 How many prime numbers (判素数,米勒拉宾算法)

    题意:给定一个数,判断是不是素数. 析:由于数太多,并且太大了,所以以前的方法都不适合,要用米勒拉宾算法. 代码如下: #include <iostream> #include <c ...

  10. Java 增强 for 循环

    Java 增强 for 循环 Java5 引入了一种主要用于数组的增强型 for 循环. Java 增强 for 循环语法格式如下: for(声明语句 : 表达式) { //代码句子 } 声明语句:声 ...