python 数据处理中的 LabelEncoder 和 OneHotEncoder
One-Hot 编码即独热编码,又称一位有效编码,其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候,其中只有一位有效。这样做的好处主要有:1. 解决了分类器不好处理属性数据的问题; 2. 在一定程度上也起到了扩充特征的作用。
将离散型特征进行one-hot编码的作用,是为了让距离计算更合理,但如果特征是离散的,并且不用one-hot编码就可以很合理的计算出距离,那么就没必要进行one-hot编码。离散特征进行one-hot编码,编码后的特征,其实每一维度的特征都可以看做是连续的特征。就可以跟对连续型特征的归一化方法一样,对每一维特征进行归一化。比如归一化到[-1,1]或归一化到均值为0,方差为1。
基于树的方法是不需要进行特征的归一化,例如随机森林,bagging 和 boosting等。基于参数的模型或基于距离的模型,都是要进行特征的归一化。Tree Model不太需要one-hot编码: 对于决策树来说,one-hot的本质是增加树的深度。
one hot encoding的优点就是它的值只有0和1,不同的类型存储在垂直的空间。缺点就是,当类别的数量很多时,特征空间会变得非常大。在这种情况下,一般可以用PCA来减少维度。而且one hot encoding+PCA这种组合在实际中也非常有用。总的来说,要是one hot encoding的类别数目不太多,建议优先考虑。
- one hot 编码及数据归一化
- 对于非负数类型编码 利用onehotEncode
- 对于字符以及混合类型编码 利用labelEncode
# 简单来说 LabelEncoder 是对不连续的数字或者文本进行编号
# sklearn.preprocessing.LabelEncoder():标准化标签,将标签值统一转换成range(标签值个数-1)范围内 from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
le.fit([1,5,67,100])
le.transform([1,1,100,67,5])
out: array([0, 0, 3, 2, 1], dtype=int64) #OneHotEncoder 用于将表示分类的数据扩维:
from sklearn.preprocessing import OneHotEncode
ohe = OneHotEncoder()
ohe.fit([[1],[2],[3],[4]])
ohe.transform([[2],[3],[1],[4]]).toarray()
out:array([[ 0., 1., 0., 0.],
[ 0., 0., 1., 0.],
[ 1., 0., 0., 0.],
[ 0., 0., 0., 1.]])
- 源码:
Examples
--------
Given a dataset with three features and four samples, we let the encoder
find the maximum value per feature and transform the data to a binary
one-hot encoding. >>> from sklearn.preprocessing import OneHotEncoder
>>> enc = OneHotEncoder()
>>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], \
[1, 0, 2]]) # doctest: +ELLIPSIS
OneHotEncoder(categorical_features='all', dtype=<... 'numpy.float64'>,
handle_unknown='error', n_values='auto', sparse=True)
>>> enc.n_values_
array([2, 3, 4])
>>> enc.feature_indices_
array([0, 2, 5, 9])
>>> enc.transform([[0, 1, 1]]).toarray()
array([[ 1., 0., 0., 1., 0., 0., 1., 0., 0.]])
Examples
--------
`LabelEncoder` can be used to normalize labels. >>> from sklearn import preprocessing
>>> le = preprocessing.LabelEncoder()
>>> le.fit([1, 2, 2, 6])
LabelEncoder()
>>> le.classes_
array([1, 2, 6])
>>> le.transform([1, 1, 2, 6]) #doctest: +ELLIPSIS
array([0, 0, 1, 2]...)
>>> le.inverse_transform([0, 0, 1, 2])
array([1, 1, 2, 6]) It can also be used to transform non-numerical labels (as long as they are
hashable and comparable) to numerical labels. >>> le = preprocessing.LabelEncoder()
>>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
LabelEncoder()
>>> list(le.classes_)
['amsterdam', 'paris', 'tokyo']
>>> le.transform(["tokyo", "tokyo", "paris"]) #doctest: +ELLIPSIS
array([2, 2, 1]...)
>>> list(le.inverse_transform([2, 2, 1]))
['tokyo', 'tokyo', 'paris']
- 下面引入scikit learn中的OneHotEncoder的介绍。
一、One-Hot Encoding
二、One-Hot Encoding的处理方法
三、实际的Python代码
- 性别:["male","female"]
- 地区:["Europe","US","Asia"]
- 浏览器:["Firefox","Chrome","Safari","Internet Explorer"]
python 数据处理中的 LabelEncoder 和 OneHotEncoder的更多相关文章
- python 数据处理中各种存储方式里数据类型的转换
自己记录,仅供参考 在数据处理时经常会遇到数据类型不匹配的事情,为了方便查看各种存储方式中数据类型的改变.我把一些自己常用的整理方式记录下来,希望可以为以后数据类型的处理工作提供便利. 数据常用的基本 ...
- Python数据处理PDF
Python数据处理(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1h8a5-iUr4mF7cVujgTSGOA 提取码:6fsl 复制这段内容后打开百度网盘手机A ...
- Python 数据处理库 pandas 入门教程
Python 数据处理库 pandas 入门教程2018/04/17 · 工具与框架 · Pandas, Python 原文出处: 强波的技术博客 pandas是一个Python语言的软件包,在我们使 ...
- 参考《Python数据处理》中英文PDF+源代码
在实际操作中掌握数据处理方法,比较实用.采用基于项目的方法,介绍用Python完成数据获取.数据清洗.数据探索.数据呈现.数据规模化和自动化的过程.主要内容包括:Python基础知识,如何从CSV.E ...
- python数据处理技巧二
python数据处理技巧二(掌控时间) 首先简单说下关于时间的介绍其中重点是时间戳的处理,时间戳是指格林威治时间1970年01月01日00时00分00秒(北京时间1970年01月01日08时00分00 ...
- Python数据处理pdf (中文版带书签)、原书代码、数据集
Python数据处理 前言 xiii第1 章 Python 简介 11.1 为什么选择Python 41.2 开始使用Python 41.2.1 Python 版本选择 51.2.2 安装Python ...
- Python 数据处理库pandas教程(最后附上pandas_datareader使用实例)
0 简单介绍 pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库.本文是对它的一个入门教程. pandas提供了快速,灵活和富有 ...
- 解析Python编程中的包结构
解析Python编程中的包结构 假设你想设计一个模块集(也就是一个"包")来统一处理声音文件和声音数据.通常由它们的扩展有不同的声音格式,例如:WAV,AIFF,AU),所以你可能 ...
- python数据处理书pdf版本|内附网盘链接直接提取|
Python数据处理采用基于项目的方法,介绍用Python完成数据获取.数据清洗.数据探索.数据呈现.数据规模化和自动化的过程.主要内容包括:Python基础知识,如何从CSV.Excel.XML.J ...
随机推荐
- 【面试总结】网易2019秋招一站式面试总结(等offer中……)
岗位:运维工程师(网易杭州) 面试时间:一天 上午十一点二十,准时开启面试,初面面试官是个看起来就像是主管的人,厚实的身体,中气浑厚的声音,整齐朴素的衬衫. 简要问题摘录如下:(后续补充答案内容) 1 ...
- CentOS日志的简单介绍
在CentOS7中,系统的日志消息由两个服务负责处理:system-journald和rsyslog. (1).常见的日志及作用 /var/log目录里存放了一些特定于系统和服务的日志文件,由rsys ...
- Highmaps网页图表教程之Highmaps第一个实例与图表构成
Highmaps网页图表教程之Highmaps第一个实例与图表构成 Highmaps第一个实例 下面我们来实现本教程的第一个Highmaps实例. [实例1-1:hellomap]下面来制作一个中国地 ...
- iOS 9应用开发教程之创建iOS 9项目与模拟器介绍
iOS 9应用开发教程之创建iOS 9项目与模拟器介绍 编写第一个iOS 9应用 本节将以一个iOS 9应用程序为例,为开发者讲解如何使用Xcode 7.0去创建项目,以及iOS模拟器的一些功能.编辑 ...
- python opencv3 直线检测
git:https://github.com/linyi0604/Computer-Vision # coding:utf8 import cv2 import numpy as np # 读入图像 ...
- JVM内存模型以及垃圾回收
JAVA堆的描述如下: 内存由Perm和Heap组成.其中Heap = {Old + NEW = { Eden , from, to } } JVM内存模型中分两大块: NEW Generation: ...
- 1 Scala基本概念 +IDE
Scala基本概念 +IDE 推荐:<Scala编程> 1 基本概念 在Spark开发中,Scala被认为是目前和Spark兼容最好的语言. Scala运行在标准的java平台,可以与ja ...
- 自顶向下学搜索引擎——北大天网搜索引擎TSE分析及完全注释[1]寻找搜索引擎入口
转自:http://blog.csdn.net/jrckkyy/article/category/402818 由于百度博客http://hi.baidu.com/jrckkyy发表文章字数有限,以后 ...
- Java基础(1)JDK的安装与环境变量配置
最近在复习Java基础,第一课就是JDK的安装配置以及环境变量的配置,不多废话,直接开始吧 (1)去Oracle官方网站下载JDK 1.8 Java的历史想必大家也清楚,Sun公司开发的一门面向对象的 ...
- http协议之 COOKIE
cookie我们都很了解,这里描述下cookie的几个参数意义 key = "qq", value = "Bobser" .. os.time(), path ...