HDU 1561 The more, The Better (有依赖背包 || 树形DP)
Problem Description
ACboy很喜欢玩一种战略游戏,在一个地图上,有N座城堡,每座城堡都有一定的宝物,在每次游戏中ACboy允许攻克M个城堡并获得里面的宝物。但由于地理位置原因,有些城堡不能直接攻克,要攻克这些城堡必须先攻克其他某一个特定的城堡。你能帮ACboy算出要获得尽量多的宝物应该攻克哪M个城堡吗?
Input
每个测试实例首先包括2个整数,N,M.(1 <= M <= N <= 200);在接下来的N行里,每行包括2个整数,a,b. 在第 i 行,a 代表要攻克第 i 个城堡必须先攻克第 a 个城堡,如果 a = 0 则代表可以直接攻克第 i 个城堡。b 代表第 i 个城堡的宝物数量, b >= 0。当N = 0, M = 0输入结束。
Output
对于每个测试实例,输出一个整数,代表ACboy攻克M个城堡所获得的最多宝物的数量。
Sample Input
3 2
0 1
0 2
0 3
7 4
2 2
0 1
0 4
2 1
7 1
7 6
2 2
0 0
Sample Output
5
13
分析:
定义状态dp[i][j] : 当前i节点及其子树下最多选择j个城市的最大值为dp[i][j];
我们考虑到特殊状态:i节点下没有孩子那么dp[i][2,3,4,5...]均为-1(因为多选总比少选好,并且选择完后城市总是有剩余)
- 判断当前节点P有没有孩子,如果有则令当前节点为P重复(1)操作,如果没有则到(2)操作;
- 将当前节点P的状态更新到期父节点上, 更新操作为dp[P'father][i] = max(dp[P'father][i], dp[P'father][j]+dp[P][k])
(j + k = i ,j>0,k>0,2<=i<=max_cost,对于每一个i遍历每一种(j,k)组合)
这里的dp[P'father][j] j个城市一定是没有包括P城市的其他j个城市的最大值直到遍历到root节点即可(dp[0][i])
3.输出dp[0][max_cost] max_cost 为题目中所给出的最多取几个城市
[i]:v 表示 第i个节点的价值为v; [0]root没有价值相当于[0]:0
[0]root
/ \
[2]:1 [3]:4
/ | \
[1]:2 [4]:1 [7]:2
/ \
[5]:1 [6]:6
代码:
#include <bits/stdc++.h>
using namespace std;
const int maxn=210;
vector<int>g[maxn];
int dp[maxn][maxn],v[maxn];
void dfs(int n,int m)
{
int siz=(int)g[n].size();
dp[n][1]=v[n];
for(int i=0; i<siz; i++)
{
int v=g[n][i];
if(m>=1) dfs(v,m-1);//递归先对子树处理
for(int j=m; j>=1; j--)
{
for(int k=1; k<=j; k++)
{
dp[n][j+1] = max(dp[n][j+1],dp[n][j+1-k]+dp[v][k]);
}
}
}
}
int main()
{
int n,m,x;
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n==0&&m==0) break;
m++;
for(int i=0; i<=n; i++) g[i].clear();
memset(dp,0,sizeof(dp));
memset(v,0,sizeof(v));
for(int i=1; i<=n; i++)
{
scanf("%d%d",&x,&v[i]);
g[x].push_back(i);
}
dfs(0,m);
cout<<dp[0][m]<<endl;
}
return 0;
}
HDU 1561 The more, The Better (有依赖背包 || 树形DP)的更多相关文章
- hdu 1561 The more, The Better (依赖背包 树形dp)
题目: 链接:点击打开链接 题意: 非常明显的依赖背包. 思路: dp[i][j]表示以i为根结点时攻击j个城堡得到的最大值.(以i为根的子树选择j个点所能达到的最优值) dp[root][j] = ...
- HDU - 6643: Ridiculous Netizens(点分治+依赖背包+空间优化)
题意:给定带点权的树,问多少个连通块,其乘积<=M; N<=2000,M<1e6; 思路:连通块-->分治: 由于普通的树DP在合并的时候复杂度会高一个M,所以用依赖背包来做. ...
- hdu 1561 The more, The Better (树上背包)
The more, The Better Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- HDU 3449 Consumer (背包问题之有依赖背包)
题目链接 Problem Description FJ is going to do some shopping, and before that, he needs some boxes to ca ...
- HDU 1203 I NEED A OFFER (01背包&&概率dp)
M - I NEED A OFFER! Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u ...
- HDU 4003 Find Metal Mineral(分组背包+树形DP)
题目链接 很棒的一个树形DP.学的太渣了. #include <cstdio> #include <string> #include <cstring> #incl ...
- HDU 4123 (2011 Asia FZU contest)(树形DP + 维护最长子序列)(bfs + 尺取法)
题意:告诉一张带权图,不存在环,存下每个点能够到的最大的距离,就是一个长度为n的序列,然后求出最大值-最小值不大于Q的最长子序列的长度. 做法1:两步,第一步是根据图计算出这个序列,大姐头用了树形DP ...
- HDU ACM 1054 Strategic Game 二分图最小顶点覆盖?树形DP
分析:这里使用树形DP做. 1.最小顶点覆盖做法:最小顶点覆盖 == 最大匹配(双向图)/2. 2.树形DP: dp[i][0]表示i为根节点,而且该节点不放,所需的最少的点数. dp[i][1]表示 ...
- (中等) HDU 5293 Tree chain problem,树链剖分+树形DP。
Problem Description Coco has a tree, whose vertices are conveniently labeled by 1,2,…,n.There are ...
随机推荐
- MYSQL中可以实现类似IF判断的方法
MYSQL中可以实现类似IF判断的方法 新建一张客户表,如下:sex:1-男,2-女,3-未知:level是客户的级别:1-超级VIP客户,2-VIP客户,3-普通客户 方式一:case函数:流程控制 ...
- DataRow数组根据指定列排序
正序:DataRow[] datarow = datarow.OrderBy(x=>x["Ybrq"]).ToArray(); 倒序:DataRow[] datarow = ...
- 使用 Idea 打 scala程序的 jar 包 - 02
Artifact ——>+ ——>JAR ——>From modules with dependencies 选择 Module,选择主函数,OK——>OK 勾选Includ ...
- kafka重新启动时出现:found a corrupted index file due to requirement failed问题解决方法
问题如下: 解决方法: 删除kafka目录下的日志文件即可解决
- DAY5-Flask项目
1.验证参数(WTForms): 当URL为/book/search?q= &page=1 时 ,p=空格,验证器会通过,在forms验证层的book.py文件中添加DataRequired验 ...
- 十三个有彩蛋的Linux命令
原文链接: https://my.oschina.net/u/4045573/blog/2986313 一键下载安装配置文本全部命令所需环境 sudo apt-get updategit clon ...
- Java多线程相关的
很多小伙伴在学习Java的时候,总是感觉Java多线程在实际的业务中很少使用,以至于不会花太多的时间去学习,技术债不断累积!等到了一定程度的时候对于与Java多线程相关的东西就很难理解,今天需要探讨的 ...
- 【BZOJ1801】【Ahoi2009】chess 中国象棋
Time Limit: 10 Sec Memory Limit: 64 MB Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方 ...
- 【uoj125】 NOI2013—书法家
http://uoj.ac/problem/125 (题目链接) 题意 在网格上写“NOI”,每个格子上有一些权值,要求覆盖的权值最大.书写有一些规则. Solution 将“NOI”分成11个部分, ...
- 20165218 《网络对抗技术》Exp1 逆向及Bof基础
Exp1 逆向及Bof基础 基础知识 1. NOP, JNE, JE, JMP, CMP汇编指令的机器码 指令 机器码 NOP NOP指令即"空指令",在x86的CPU中机器码为0 ...