MIT6.006Lec03:插入排序,归并排序,递归树
MIT6.006是算法导论课,Lec03主要讲插入排序,归并排序,以及分析方法(递归树)等。
插入排序,可以分为线性插入排序、二分插入排序,区别在于当把数组中某元素插入到前面的有序列表中时,前者遍历,后者二分,后者更加稳定。
归并排序,是用分治思想处理,先分别排序,再合并。
递归树,我的理解是算法消耗时间T(n)用树状的结构,表示每次递归消耗的时间,这些时间累加就是T(n),而递归树的每一行和相邻行之间的关系也是比较容易观察的,这就容易写出时间复杂度的表达式了。另外有主定理可以使用。
参考了《算法导论》和网络上的资源,以下是我修改后的代码:
#coding:utf8
#插入排序 版本1(线性插入排序) def insertion_sort1(a):
for j in range(1, len(a)):
key = a[j]
i = j - 1
while i>=0 and a[i]>key:
a[i+1] = a[i]
i = i-1
a[i+1] = key if __name__ == '__main__':
array = [2,2, 4, 32, 64, 34, 78, 23, 2345, 12, 1, 3, 2]
insertion_sort1(array)
for a in array:
print a
# coding:utf8
# 插入排序 版本2(二分插入排序)
def binInsertSort(a):
n = len(a)
for j in range(1, n):
key = a[j]
i = j - 1 if key > a[i]:
continue
l, r = 0, i
while l <= r:
#print l, r
mid = (l + r) / 2
if key < a[mid]:
r = mid - 1
else:
l = mid + 1
k = j
while k > l:
a[k] = a[k - 1]
k = k - 1 a[l] = key if __name__ == '__main__':
array = [2, 2, 4, 32, 64, 34, 78, 23, 2345, 12, 1, 3]
insertsort(array)
for a in array:
print a
#coding:utf8
#归并排序
#MIT6.006 Lec03 def merge_sort(a, l, r):
'''归并排序主程序'''
if l < r:
m = (l + r) / 2
merge_sort(a, l, m)
merge_sort(a, m + 1, r)
merge(a, l, m, r) def merge(a, l, m, r):
'''归并两个有序表'''
left = a[l:m+1]
right = a[m+1:r+1]
len1 = len(left)
len2 = len(right)
i, j, k = 0, 0, l
while i<len1 and j < len2:
if left[i] < right[j]:
a[k] = left[i]
i = i + 1
else:
a[k] = right[j]
j = j + 1
k += 1
while i<len1:
a[k] = left[i]
k += 1
i += 1
while j<len2:
a[k] = right[j]
k += 1
j += 1 if __name__ == '__main__':
array = [2, 2, 4, 32, 64, 34, 78, 23, 2345, 12, 1, 3, 2]
merge_sort(array, 0, len(array)-1)
for a in array:
print a
MIT6.006Lec03:插入排序,归并排序,递归树的更多相关文章
- 算法导论 - 基础知识 - 算法基础(插入排序&归并排序)
在<算法导论>一书中,插入排序作为一个例子是第一个出现在该书中的算法. 插入排序: 对于少量元素的排序,它是一个有效的算法. 插入排序的工作方式像许多人排序一手扑克牌.开始时,我们手中牌为 ...
- react封装组织架构递归树
想用react实现一个递归树,但一些框架里面的有些不符合需求,于是自己写了个,功能比较简单,欢迎批评指正.. react实现这样一个组织架构递归树,下级部门的收起和展开,点击部门名称时请求接口获取下级 ...
- 【整理】iview Tree数据格式问题,无限递归树处理数据
iview Tree数据格式问题,无限递归树处理数据 https://juejin.im/post/5b51a8a4e51d455d6825be20
- 递归树处理,配合vue的vueTreeselect组件使用
在项目中经常会使用到tree,并且需要对递归树进行操作. 在vue项目中,使用vue-treeselect插件(https://vue-treeselect.js.org/) 使用中遇到的问题: 1. ...
- C/C++深度优先搜索(递归树模拟)
//C++深度优先搜索(递归树模拟) #define _CRT_SECURE_NO_WARNINGS #include <iostream> #define MAX_N 1000 usin ...
- php基础排序算法 冒泡排序 选择排序 插入排序 归并排序 快速排序
<?php$arr=array(12,25,56,1,75,13,58,99,22);//冒泡排序function sortnum($arr){ $num=count($arr); ...
- 最全 C 语言常用算法详解-排序-队列-堆栈-链表-递归-树 (面试有用)
具体 源代码 案例查看github,持续更新中............ github地址:https://github.com/Master-fd/C-Algorithm 1. 二分法查找 2. 冒泡 ...
- swift_枚举 | 可为空类型 | 枚举关联值 | 枚举递归 | 树的概念
***************可为空的类型 var demo2 :we_demo = nil 上面这个代码串的语法是错的 为什么呢, 在Swift中,所有的类型定义出来的属性的默认值都不可以是nil ...
- C#.NET 大型通用信息化系统集成快速开发平台 4.0 版本 - 用户权限树的实现 -- 权限递归树
业务系统里经常会需要计算类似的树形权限树的业务需求 1:往往会有一些需求,a 对 b 有权限, b对c 有权限, 等等. 2:还需要很直观的看到,整个权限的树形关系,一目了然的那种. 3:程序调用简单 ...
随机推荐
- sidecar学习
1.SideCar的出现 微服务的结构是细粒度的,由多个服务构成,支持不同的服务用不同的语言来编写,比如a服务用python,b服务用java,C服务用php等,我们称为异构语言,那么在利用zuul来 ...
- jQuery速看
本文参考w3school网站. jQuery是一个十分流行的javascript库. 基础语法是:$(selector).action() $:表示使用的语法为jquery selector:选择器 ...
- P1776 宝物筛选_NOI导刊2010提高(02)&& 多重背包二进制优化
多重背包, 要求 \(N\log N\) 复杂度 Solution 众所周和, \(1-N\) 之内的任何数可以由 \(2^{0}, 2^{1}, 2^{2} ... 2^{\log N}, N - ...
- 序列内第k小查询(线段树)
最近请教了一下大佬怎么求序列内第k大查询,自己又捣鼓了一下,虽然还没有懂得区间第k大查询,不过姑且做一个记录先吧 因为每个元素大小可能很大而元素之间不连续,所以我们先离散化处理一下,程序中的ori[ ...
- 【官方文档】Nginx负载均衡学习笔记(二)负载均衡基本概念介绍
简介 负载均衡(Server Load Balancer)是将访问流量根据转发策略分发到后端多台 ECS 的流量分发控制服务.负载均衡可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应 ...
- 使用object_box遇到的崩溃 java.lang.UnsatisfiedLinkError:
java.lang.UnsatisfiedLinkError: dalvik.system.PathClassLoader[DexPathList[[zip file "/data/app/ ...
- php中的几个常用的魔术常量
在php中我们可以自定义常量,同时php中也自定义了一些好用的常量,这些常量会根据其所在的位置而自动变化. 我们称之为魔术常量.魔术常量可以大写也可以小写,是不区分大小写的 __FIL ...
- Swift动态添加UIImageView并添加事件
Swift动态添加UIImageView并添加事件: 1. 创建UIImageView实例,并进行初始化 2. 设置UIImageView的用户交互属性userInteractionEnabled为T ...
- 转 -- OK6410 tftp下载内核、文件系统以及nand flash地址相关整理、总结
转载地址:http://emouse.cnblogs.com/ 飞凌官方提供了一键下载烧写linux的方式,相对来说比较方便,但是对于开发来说不够灵活,因此这篇文章把tftp相关的点介绍一下,整理下其 ...
- python作业堡垒机(第十三周)
作业需求: 1. 所有的用户操作日志要保留在数据库中 2. 每个用户登录堡垒机后,只需要选择具体要访问的设置,就连接上了,不需要再输入目标机器的访问密码 3. 允许用户对不同的目标设备有不同的访问权限 ...