5在1e9+9下有二次剩余,那么fib的通项公式就有用了。

  已知Fn,求n。注意到[(1+√5)/2]·[(1-√5)/2]=-1,于是换元,设t=[(1+√5)/2]n,原式变为√5·Fn=t-(-1)n·t-1。同乘t并移项,可得t2-√5·Fn·t-(-1)n=0。讨论n的奇偶性,BSGS求二次剩余大力解方程即可。用BSGS求二次剩余是非常简单的,求出其以原根为底的离散对数即可。

  注意二次剩余有正负两解,但似乎代进去正根(即√gk=gk/2)就行了,不太明白。以及题目要求最小解,BSGS的时候注意顺序。还有BSGS不一定有解,我也不知道我在BSGS里面assert了半天是在干啥。调了一年惨炸了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<map>
#include<cassert>
using namespace std;
#define ll long long
#define P 1000000009
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,b,g,v,ans=P;
map<int,int> f;
int ksm(int a,int k)
{
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
int inv(int a){return ksm(a,P-);}
int BSGS(int g,int k)
{
f.clear();
int block=sqrt(P),t=ksm(g,block),x=,ans=-;g=inv(g);
for (int i=;i<block;i++)
{
if (f.find(1ll*x*k%P)==f.end()) f[1ll*x*k%P]=i;
x=1ll*x*g%P;
}
x=;
for (int i=;i<P;i+=block)
{
if (f.find(x)!=f.end()) {ans=f[x]+i;break;}
x=1ll*x*t%P;
}
return ans;
}
int SQRT(int n)
{
int k=BSGS(g,n);
if (k==-||k&) return -;
return ksm(g,k>>);
}
void solve(int c,int op,int op2)
{
int delta=SQRT(((1ll*b*b-4ll*c)%P+P)%P);
if (delta==-) return;
delta=(P+op2*delta)%P;
int ans1=1ll*((delta-b)%P+P)%P*inv()%P,ans2=1ll*((-delta-b)%P+P)*inv()%P;
ans1=BSGS(v,ans1),ans2=BSGS(v,ans2);
if ((ans1&)==op&&ans1>) ans=min(ans,ans1);
if ((ans2&)==op&&ans2>) ans=min(ans,ans2);
}
int fib(int n)
{
struct matrix
{
int n,a[][];
matrix operator *(const matrix&b) const
{
matrix c;c.n=n;memset(c.a,,sizeof(c.a));
for (int i=;i<n;i++)
for (int j=;j<;j++)
for (int k=;k<;k++)
c.a[i][j]=(c.a[i][j]+1ll*a[i][k]*b.a[k][j])%P;
return c;
}
}f,a;
f.n=;f.a[][]=,f.a[][]=;
a.n=;a.a[][]=,a.a[][]=a.a[][]=a.a[][]=;
for (;n;n>>=,a=a*a) if (n&) f=f*a;
return f.a[][];
}
void work(int sqrt5)
{
b=(P-1ll*sqrt5*n%P)%P;
v=1ll*(sqrt5+)*inv()%P;
solve(P-,,),solve(,,);
//solve(P-1,0,-1),solve(1,1,-1);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5104.in","r",stdin);
freopen("bzoj5104.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
/*for (int i=2;;i++)
{
bool flag=1;
for (int j=2;j*j<P;j++)
if ((P-1)%j==0)
{
if (ksm(i,j)==1) {flag=0;break;}
if (ksm(i,(P-1)/j)==1) {flag=0;break;}
}
if (flag) {g=i;break;}
}*/
g=;
n=read();
work(SQRT());//,work(P-SQRT(5));
if (ans==P) cout<<-;else assert(fib(ans)==n),cout<<ans;
return ;
}

BZOJ5104 Fib数列(二次剩余+BSGS)的更多相关文章

  1. BZOJ5104 Fib数列 二次剩余、BSGS

    传送门 发现只有通项公式可以解决考虑通项公式 \(F_n = \frac{1}{\sqrt{5}}((\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^ ...

  2. bzoj5104 Fib数列(BSGS+二次剩余)

    快AFO了才第一次写二次剩余的题…… 显然应该将Fn写成通项公式(具体是什么写起来不方便而且大家也都知道),设t=((1+√5)/2)n,T=√5N,然后可以得到t-(-1)t/t=√5N,两边同时乘 ...

  3. 【BZOJ5104】Fib数列(BSGS,二次剩余)

    [BZOJ5104]Fib数列(BSGS,二次剩余) 题面 BZOJ 题解 首先求出斐波那契数列的通项: 令\(A=\frac{1+\sqrt 5}{2},B=\frac{1-\sqrt 5}{2}\ ...

  4. bzoj5104: Fib数列

    Description Fib数列为1,1,2,3,5,8... 求在Mod10^9+9的意义下,数字N在Fib数列中出现在哪个位置 无解输出-1 Input 一行,一个数字N,N < = 10 ...

  5. @bzoj - 5104@ Fib数列

    目录 @description@ @solution@ @accepted code@ @details@ @description@ Fib数列为1,1,2,3,5,8... 求在Mod10^9+9 ...

  6. FIB数列

    斐波那契级数除以N会出现循环,此周期称为皮萨诺周期. 下面给出证明 必然会出现循环 这是基于下面事实: 1. R(n+2)=F(n+2) mod P=(F(n+1)+F(n)) mod P=(F(n+ ...

  7. 动态规划之Fib数列类问题应用

    一,问题描述 有个小孩上楼梯,共有N阶楼梯,小孩一次可以上1阶,2阶或者3阶.走到N阶楼梯,一共有多少种走法? 二,问题分析 DP之自顶向下分析方式: 爬到第N阶楼梯,一共只有三种情况(全划分,加法原 ...

  8. UVaLive 3357 Pinary (Fib数列+递归)

    题意:求第 k 个不含前导 0 和连续 1 的二进制串. 析:1,10,100,101,1000,...很容易发现长度为 i 的二进制串的个数正好就是Fib数列的第 i 个数,因为第 i 个也有子问题 ...

  9. 【bzoj5118】Fib数列2 费马小定理+矩阵乘法

    题目描述 Fib定义为Fib(0)=0,Fib(1)=1,对于n≥2,Fib(n)=Fib(n-1)+Fib(n-2) 现给出N,求Fib(2^n). 输入 本题有多组数据.第一行一个整数T,表示数据 ...

随机推荐

  1. C#用Oracle.DataAccess中连接Oracle要注意版本问题!转)

    一般人,不包括全部平时在开发中使用的都是32位的PC机,所以安装的也是Oracle32位的客户端.但是一般服务器都是64位的,安装的也是 64位的Oracle客户端,如果要部署使用Oracle.Dat ...

  2. 宏基4752g 开机进度条卡到75%左右,解决办法

    起因:更新win10推送的更新补丁,失败自动回退.开机进度条只能走到75%,bios进不去,最后就卡在开机的logo.(还有其他人是win7直接升级win10,也出现了这种情况.)解决办法:重刷bio ...

  3. 什么是REST,RESTful?

    转载自https://www.zhihu.com/question/28557115 https://blog.csdn.net/hjc1984117/article/details/77334616 ...

  4. Catlike学习笔记(1.2)-使用Unity画函数图像

    『Catlike系列教程』第二篇来了~今天周六,早上(上午11点)醒来去超市买了一周的零食回来以后就玩了一整天游戏非常有负罪感.现在晚上九点天还亮着感觉像下午7点左右的样子好像还不是很晚...所以就写 ...

  5. 数学建模及机器学习算法(一):聚类-kmeans(Python及MATLAB实现,包括k值选取与聚类效果评估)

    一.聚类的概念 聚类分析是在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好.我们事先并不知道数据的正确结果(类标),通过聚类算法来发现和挖掘数据本身的结 ...

  6. Maven ResourceBundle.getBundle读取Properties异常MissingResourceException: Can't find bundlei解决方法

    参考:https://blog.csdn.net/thousa_ho/article/details/72817616 问题描述 ResourceBundle读取properties配置文件提示 Mi ...

  7. python3 通过qq邮箱定时发送邮件

    下面的代码为了每天定时发送监控邮件,监控什么呢?监控当天redis队列中是否有没有消费的数据,和当天mysql中新增的数据量 # -*- coding:utf-8 -*- from common.re ...

  8. 6.openldap客户端安装

    作者:yaoyao 1.账号登录系统流程讲解 当在客户端输入账号登录系统时.系统根据/etc/nsswitch.conf配置文件获取账号查找顺序,然后在根据pam配置文件调用相关模块,对账号/etc/ ...

  9. 软件工程-东北师大站-第十一次作业(PSP)

    PSP 饼状图 2.本周进度条 3.本周累计进度图 代码累计折线图 博文字数累计折线图  

  10. 20162319 实验二 Java面对对象程序设计 实验报告

    实验二 Java面向对象程序设计 实验内容 1.初步掌握单元测试和TDD 2.理解并掌握面向对象三要素:封装.继承.多态 3.初步掌握UML建模 4.熟悉S.O.L.I.D原则 5.了解设计模式 实验 ...