题目链接

题目描述
有一张无限大的棋盘,你要将马从(0,0)移到(n,m)。
每一步中,如果马在(x,y),你可以将它移动到(x+1,y+2),(x+1,y-2),(x-1,y+2),(x-1,y-2),(x+2,y+1),(x+2,y-1),(x-2,y+1)或(x-2,y-1)。
你需要最小化移动步数。
输入描述:
第一行一个整数t表示数据组数 (1≤ t≤ 1000)。
每组数据一行两个整数n,m (|n|,|m|≤ 10$$$^9$$$)。
输出描述:
每组数据输出一行一个整数表示最小步数。
输入
2
0 4
4 2
输出
2
2
题意
使用最少步数把“马”从(0,0)走到(n,m)
分析
遇事不决先打个表。(请原谅我的作图水平,原点在左上角)

最先发现当n+m=3k时,只用k步就能走到,但前提是每走一步,马和终点的曼哈顿距离都减少3,因此只对介于n=2m和m=2n之间的点满足。
有了这个性质以后,进一步还可以发现,在分界线内部,贪心地走,n+m=3k+1上的点只需要从n+m=3k上的点再走一步就能到,n+m=3k+2上的点从n+m=3k上的点再走两步就能到。所以,求解介于n=2m和m=2n之间的点完成了。
以上是在打表之前分析出来,打表之后得到验证的,接下来是分界线外部的点,打表后意外发现是以4个为整体在有规律的变化。

  • 当n=0时,从m=2开始形成循环节,假设用p表示m在第几节,r表示m是节内第几个,那么p=(m-2)/4,r=(m-2)%4,(0,m)的值就是2+2p+(r&1);
  • 当n>0时,从m=2n开始形成循环节,同样求出p=(m-2n)/4,r=(m-2n)%4,那么(n,m)的值就是n+2p+r;

因为n和m对称求解方法是一样的,所以求解边界外的点也完成了(还有四个特例需要特判一下)。
PS:(2,2)很特殊,它不能在n+m=3的基础上,再一步走到的原因是,它需要的点位于(3,0)和(0,3),而这两个点超出了边界,但对于其他点是都能在n+m=3k上找到点的。

总结
看不懂标答怎么办,好像在乱搞的路上越走越远了
代码
#include<stdio.h>
int main() {
int T, n, m;
int px, rx;
for (scanf("%d", &T); T; T--) {
scanf("%d %d", &n, &m);
if (n<)n = -n; if (m<)m = -m;
if (n + m == )printf("0\n");
else if (n + m == )printf("3\n");
else if (n == && m == )printf("2\n");
else if (n == && m == )printf("4\n");
else if (m <= * n&&n <= * m)
printf("%d\n", (m + n) / + (m + n) % );
else if (m == ) {
px = (n - ) / , rx = (n - ) % ;
printf("%d\n", * px + + (rx & ));
}
else if (n == ) {
px = (m - ) / , rx = (m - ) % ;
printf("%d\n", * px + + (rx & ));
}
else if (m> * n) {
px = (m - * n) / , rx = (m - * n) % ;
printf("%d\n", n + px * + rx);
}
else if (n> * m) {
px = (n - * m) / , rx = (n - * m) % ;
printf("%d\n", m + px * + rx);
}
}
}

nowcoder 203A Knight(贪心+打表)的更多相关文章

  1. [BZOJ 2006] [NOI 2010]超级钢琴(贪心+ST表+堆)

    [BZOJ 2006] [NOI 2010]超级钢琴(贪心+ST表+堆) 题面 给出一个长度为n的序列,选k段长度在L到R之间的区间,一个区间的值等于区间内所有元素之的和,使得k个区间的值之和最大.区 ...

  2. Hdu 5289-Assignment 贪心,ST表

    题目: http://acm.hdu.edu.cn/showproblem.php?pid=5289 Assignment Time Limit: 4000/2000 MS (Java/Others) ...

  3. Codeforces 980E The Number Games 贪心 倍增表

    原文链接https://www.cnblogs.com/zhouzhendong/p/9074226.html 题目传送门 - Codeforces 980E 题意 $\rm Codeforces$ ...

  4. HDU3183 贪心/RMQ-ST表

    A Magic Lamp Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  5. B - 小Y上学记——小Y的玩偶

    B - 小Y上学记——小Y的玩偶 Time Limit: 2000/1000MS (Java/Others)    Memory Limit: 128000/64000KB (Java/Others) ...

  6. SQL面经汇总

    转载链接:https://www.nowcoder.com/discuss/95812 目前的打算是还要写一个假设检验的汇总和机器学习的汇总. 之前写的概率论汇总: https://www.nowco ...

  7. P1463 [HAOI2007]反素数

    题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6 ...

  8. P3052 [USACO12MAR]摩天大楼里的奶牛(迭代加深搜索)

    (已经一句话了) 第一反应:暴力 第二反应:朴素算法过不去 第三反应:没法折半暴搜(没法统计答案) 所以,歪歪了一个类似贪心刷表的方法,过了这道题. 首先,如果爆搜的话会有几个状态: 当前牛 当前几个 ...

  9. P2060 马步距离(洛谷)

    我们无论遇到什么困难,都不要拖,微笑着面对他,战胜拖延的最好方法就是面对拖延. 今天又拖延了…… 早晨听完老师讲课,本想做一道题练练手的,结果因为懒,瘫了一上午.最后在固定的刷题时间去面对了这道题,然 ...

随机推荐

  1. 总结一下公司项目使用各种较新的前端技术和 Api 的一些经验。

    关于 ES6: 需要注意 ES6 的一些特性和 API 是需要一个 200k 的 Polyfill 才能得到支持的,特性如 for ... of 循环,generator,API 如 Object.a ...

  2. mtr语言真是逆天了

    实践证明,设计一个语言,还不是简单的解释没一行哦

  3. 一切的浮点型进行计算操作都要用BigDecimal

    简化: 1.引言 float和double类型的主要设计目标是为了科学计算和工程计算.他们执行二进制浮点运算,这是为了在广域数值范围上提供较为精确的快速近似计算而精心设计的.然而,它们没有提供完全精确 ...

  4. SAO Utils – SAO风格启动菜单

    SAO Utils 是一款拥有 SAO(刀剑神域)外观风格的启动器,搭载各种各样强大的小工具. 随时随地.在屏幕任何地方 按住鼠标左键和右键并向下拖动 即可呼出应用启动菜单(触控设备直接支持双指下滑手 ...

  5. Haproxy介绍、安装与配置

    Haproxy技术详解一. 介绍HAProxy是一个使用C语言编写的自由及开放源代码软件,其提供高可用性.负载均衡,以及基于TCP和HTTP的应用程序代理.HAProxy特别适用于那些负载特大的web ...

  6. 通过python将xml文件转换成html文件

    #数据类型的转换 def main():    maxwidth = 100  #用于规范字段的长度    print_start()    count=0    while True:        ...

  7. python 思维导图-linux命令

    linux基础 linux关于文件/目录的终端命令 linux关于文件内容处理的终端命令

  8. docker实现跨主机连接

    实验环境: centos7系统 host1:192.168.42.128 host2:192.168.42.129 dokcer容器跨主机连接 1.使用网桥实现跨主机容器连接 2.使用Open vSw ...

  9. 新手Python第三天(函数)

    Python 函数的创建 def func2(): print('haha') # 函数的返回值 # 函数的返回值,没有定义返回None, # 有一个返回值返回这个object(可以返回一个函数对象) ...

  10. Cocos2dx源码赏析(2)之渲染

    Cocos2dx源码赏析(2)之渲染 这篇,继续从源码的角度来跟踪下Cocos2dx引擎的渲染过程,以此来梳理下Cocos2dx引擎是如何将精灵等元素显示在屏幕上的. 从上一篇对Cocos2dx启动流 ...