首先令$n=r-l+1$。

令$k$表示区间$[l,r]$中存在多少个数$x$,使得$x$不存在小于$x$且在区间$[l,r]$中的因数,我们把包含这些数的数集称为$S$

我们来先想一个$O(nk)$的$min-max$容斥做法吧。。。。。

显然这一题我们可以转化为min-max容斥的模型(将这k个数选完期望需要选多少次)

$max_{S}=\sum_{T∈S}(-1)^{|T+1|}min_{T}$。

令$P_x=\sum_{T∈S\ and\ |T|=x} min_{T}$。

我们推一推式子就会发现$P_i=x!(n-x)!\sum_{i=1}{n-k+1}i\binom{n-i}{k-i}$。

然后我们发现这个式子是$O(n^2)$的,而且非常难以推出。

代码如下(这个代码可能有点假)

 #include<bits/stdc++.h>
#define L long long
#define MOD 1000000007
#define M 10000005
using namespace std; L pow_mod(L x,L k){L ans=; for(;k;k>>=,x=x*x%MOD) if(k&) ans=ans*x%MOD; return ans;}
L fac[M]={},invfac[M]={};
L C(int n,int m){return fac[n]*invfac[m]%MOD*invfac[n-m]%MOD;} int vis[M]={};
int n,k=; L p[M]={}; int main(){
fac[]=; for(int i=;i<M;i++) fac[i]=fac[i-]*i%MOD;
invfac[M-]=pow_mod(fac[M-],MOD-);
for(int i=M-;~i;i--) invfac[i]=invfac[i+]*(i+)%MOD; int l,r; cin>>l>>r; n=r-l+;
for(int i=l;i<=r;i++){
if(vis[i]) continue;
k++;
for(int j=i;j<=r;j+=i) vis[j]=;
} for(int x=;x<=k;x++){
L now=;
for(int i=;i<=n-x+;i++){
L s=i;
for(int j=;j<x;j++) s=s*(n-i-j+)%MOD;
now=(now+s)%MOD;
}
p[x]=now*x%MOD*fac[n-x]%MOD;
}
L ans=;
for(L x=,zf=;x<=k;x++,zf=-zf){
ans=(ans+zf*p[x]*C(k,x)%MOD+MOD)%MOD;
}
cout<<ans<<endl;
}

考虑一些简单的方法

我们考虑回题目中的枚举排列。令$F_i$表示 $t(p)=i$的排列个数,那么答案显然为$\sum_{i=k}^{n}F_i$

不难发现,一种$t(p)=i$的排列,其前$i-1$项中必包含有数集$S$中$k-1$个数,且第i个数必为数集$S$中的数。

那么不难求出$F_i=k(n-k)!\dfrac{i!}{(i-k)!}$

答案即为$k(n-k)!\sum_{i=k}^{n} \dfrac{i!}{(i-k)!}$

随便求一求就好了

 #include<bits/stdc++.h>
#define L long long
#define MOD 1000000007
#define M 10000005
using namespace std; L pow_mod(L x,L k){L ans=; for(;k;k>>=,x=x*x%MOD) if(k&) ans=ans*x%MOD; return ans;}
L fac[M]={},invfac[M]={};
L C(int n,int m){return fac[n]*invfac[m]%MOD*invfac[n-m]%MOD;} int vis[M]={};
int n,k=; L p[M]={}; int main(){
fac[]=; for(int i=;i<M;i++) fac[i]=fac[i-]*i%MOD;
invfac[M-]=pow_mod(fac[M-],MOD-);
for(int i=M-;~i;i--) invfac[i]=invfac[i+]*(i+)%MOD; int l,r; cin>>l>>r; n=r-l+;
for(int i=l;i<=r;i++){
if(vis[i]) continue;
k++;
for(int j=i;j<=r;j+=i) vis[j]=;
}
L ans=k*fac[n-k]%MOD,sum=;
for(int i=k;i<=n;i++)
sum=(sum+fac[i]*invfac[i-k])%MOD;
cout<<ans*sum%MOD<<endl;
}

【jxoi2018】游戏 组合数学的更多相关文章

  1. luogu P4562 [JXOI2018]游戏 组合数学

    LINK:游戏 当L==1的时候 容易想到 答案和1的位置有关. 枚举1的位置 那么剩下的方案为(R-1)! 那么总答案为 (R+1)*R/2(R-1)! 考虑L==2的时候 对于一个排列什么时候会终 ...

  2. 洛谷P4562 [JXOI2018]游戏(组合数学)

    题意 题目链接 Sol 这个题就比较休闲了. \(t(p)\)显然等于最后一个没有约数的数的位置,那么我们可以去枚举一下. 设没有约数的数的个数有\(cnt\)个 因此总的方案为\(\sum_{i=c ...

  3. 【BZOJ5323】[JXOI2018]游戏(组合计数,线性筛)

    [BZOJ5323][JXOI2018]游戏(组合计数,线性筛) 题面 BZOJ 洛谷 题解 显然要考虑的位置只有那些在\([l,r]\)中不存在任意一个约数的数. 假设这样的数有\(x\)个,那么剩 ...

  4. [JXOI2018]游戏 (线性筛,数论)

    [JXOI2018]游戏 \(solution:\) 这一道题的原版题面实在太负能量了,所以用了修改版题面. 这道题只要仔细读题,我们就可以将题目的一些基本性质分析出来:首先我们定义:对于某一类都可以 ...

  5. 【题解】JXOI2018游戏(组合数)

    [题解]JXOI2018游戏(组合数) 题目大意 对于\([l,r]\)中的数,你有一种操作,就是删除一个数及其所有倍数.问你删除所有数的所有方案的步数之和. 由于这里是简化题意,有一个东西没有提到: ...

  6. BZOJ5323 JXOI2018游戏(线性筛+组合数学)

    可以发现这个过程非常类似埃氏筛,将在该区间内没有约数的数定义为质数,那么也就是求每种方案中选完所有质数的最早时间之和. 于是先求出上述定义中的质数个数,线性筛即可.然后对每个最短时间求方案数,非常显然 ...

  7. [BZOJ 5323][Jxoi2018]游戏

    传送门 \(\color{green}{solution}\) 它每次感染的人是它的倍数,那么我们只需要找出那些除了自己以外在\(l\), \(r\)内没有别的数是 它的约数的数,在这里称其为关键数. ...

  8. [JXOI2018]游戏

    嘟嘟嘟 九条可怜竟然有这种良心题,似乎稍稍刷新了我对九条可怜的认识. 首先假设我们求出了所有必须要筛出来的数m,那么\(t(p)\)就只受最后一个数的位置影响. 所以我们枚举最后一个数的位置,然后用组 ...

  9. 洛谷P4562 [JXOI2018]游戏 数论

    正解:数论 解题报告: 传送门! 首先考虑怎么样的数可能出现在t(i)那个位置上?显然是[l,r]中所有无法被表示出来的数(就约数不在[l,r]内的数嘛QwQ 所以可以先把这些数筛出来 具体怎么筛的话 ...

随机推荐

  1. 针对程序员的podcast

    身为程序员们,必须要懂得合理的利用琐碎时间来提炼自身,或许上下班途中或骑行或徒步或...时,以下这些Podcasts对你有些许作用: The Hanselminutes podcast by Scot ...

  2. css3新增功能

    CSS3新增功能 1 CSS3选择器详解 1.1 基础选择器 通配选择器* 元素选择器E ID选择器#id CLASS选择器.class 群组选择器select1,selectN 1.2 层次选择器 ...

  3. Devexpress VCL Build v2014 vol 14.2.1 beta发布

    已经快到2015 年了. 14.2.1 beta 才出来了. 还好,有一些新东西. 官网地址 VCL Gauge Control Designed to clearly convey informat ...

  4. 2018.09.29 bzoj3039: 玉蟾宫(悬线法)

    传送门 悬线法的板子题. 悬线法只需要保存当期点向下最多多少个,把这个当成一条线,再处理出线绷直之后最多能向左右延展多少就行了. 代码: #include<bits/stdc++.h> # ...

  5. 2018.09.11 loj#10216.五指山(exgcd)

    传送门 就是一个exgcd的板子. 但注意算距离差的时候是在一个环上面算. 还有,答案要开long long233... 注意这两点之后就是exgcd板子了. 代码: #include<bits ...

  6. hdu-1133

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1133 思路:有m个人拿50元的纸币,n个人拿100元的纸币门票价格是50元,要求每个售票员遇到100元 ...

  7. linux上安装maven

    解压安装: tar -zxvf apache-maven-3.3.9-bin.tar.gz 配置环境变量 cd /etc/ vi profile 在最后面加上M2_HOME=/usr/local/my ...

  8. hdu2602 Bone Collector(01背包) 2016-05-24 15:37 57人阅读 评论(0) 收藏

    Bone Collector Problem Description Many years ago , in Teddy's hometown there was a man who was call ...

  9. STL中的Vector相关用法

    STL中的Vector相关用法 标准库vector类型使用需要的头文件:#include <vector>. vector 是一个类模板,不是一种数据类型,vector<int> ...

  10. 基于FPGA的4x4矩阵键盘驱动调试

    好久不见,因为博主最近两个月有点事情,加上接着考试,考完试也有点事情要处理,最近才稍微闲了一些,这才赶紧记录分享一篇博文.FPGA驱动4x4矩阵键盘.这个其实原理是十分简单,但是由于博主做的时候遇到了 ...