前面分别介绍了邻接矩阵无向图的C和C++实现,本文通过Java实现邻接矩阵无向图。

目录
1. 邻接矩阵无向图的介绍
2. 邻接矩阵无向图的代码说明
3. 邻接矩阵无向图的完整源码

转载请注明出处:http://www.cnblogs.com/skywang12345/

更多内容:数据结构与算法系列 目录

邻接矩阵无向图的介绍

邻接矩阵无向图是指通过邻接矩阵表示的无向图。

上面的图G1包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"(A,C),(A,D),(A,F),(B,C),(C,D),(E,G),(F,G)"共7条边。由于这是无向图,所以边(A,C)和边(C,A)是同一条边;这里列举边时,是按照字母先后顺序列举的。

上图右边的矩阵是G1在内存中的邻接矩阵示意图。A[i][j]=1表示第i个顶点与第j个顶点是邻接点,A[i][j]=0则表示它们不是邻接点;而A[i][j]表示的是第i行第j列的值;例如,A[1,2]=1,表示第1个顶点(即顶点B)和第2个顶点(C)是邻接点。

邻接矩阵无向图的代码说明

1. 基本定义

public class MatrixUDG {

    private char[] mVexs;       // 顶点集合
private int[][] mMatrix; // 邻接矩阵 ...
}

MatrixUDG是邻接矩阵对应的结构体。mVexs用于保存顶点,mMatrix则是用于保存矩阵信息的二维数组。例如,mMatrix[i][j]=1,则表示"顶点i(即mVexs[i])"和"顶点j(即mVexs[j])"是邻接点;mMatrix[i][j]=0,则表示它们不是邻接点。

2. 创建矩阵

这里介绍提供了两个创建矩阵的方法。一个是用已知数据,另一个则需要用户手动输入数据

2.1 创建图(用已提供的矩阵)

/*
* 创建图(用已提供的矩阵)
*
* 参数说明:
* vexs -- 顶点数组
* edges -- 边数组
*/
public MatrixUDG(char[] vexs, char[][] edges) { // 初始化"顶点数"和"边数"
int vlen = vexs.length;
int elen = edges.length; // 初始化"顶点"
mVexs = new char[vlen];
for (int i = 0; i < mVexs.length; i++)
mVexs[i] = vexs[i]; // 初始化"边"
mMatrix = new int[vlen][vlen];
for (int i = 0; i < elen; i++) {
// 读取边的起始顶点和结束顶点
int p1 = getPosition(edges[i][0]);
int p2 = getPosition(edges[i][1]); mMatrix[p1][p2] = 1;
mMatrix[p2][p1] = 1;
}
}

该函数的作用是利用已知数据来创建一个邻接矩阵无向图。 实际上,在本文的测试程序源码中,该方法创建的无向图就是上面图G1。具体的调用代码如下:

    char[] vexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
char[][] edges = new char[][]{
{'A', 'C'},
{'A', 'D'},
{'A', 'F'},
{'B', 'C'},
{'C', 'D'},
{'E', 'G'},
{'F', 'G'}};
MatrixUDG pG; pG = new MatrixUDG(vexs, edges);

2.2 创建图(自己输入)

/*
* 创建图(自己输入数据)
*/
public MatrixUDG() { // 输入"顶点数"和"边数"
System.out.printf("input vertex number: ");
int vlen = readInt();
System.out.printf("input edge number: ");
int elen = readInt();
if ( vlen < 1 || elen < 1 || (elen > (vlen*(vlen - 1)))) {
System.out.printf("input error: invalid parameters!\n");
return ;
} // 初始化"顶点"
mVexs = new char[vlen];
for (int i = 0; i < mVexs.length; i++) {
System.out.printf("vertex(%d): ", i);
mVexs[i] = readChar();
} // 初始化"边"
mMatrix = new int[vlen][vlen];
for (int i = 0; i < elen; i++) {
// 读取边的起始顶点和结束顶点
System.out.printf("edge(%d):", i);
char c1 = readChar();
char c2 = readChar();
int p1 = getPosition(c1);
int p2 = getPosition(c2); if (p1==-1 || p2==-1) {
System.out.printf("input error: invalid edge!\n");
return ;
} mMatrix[p1][p2] = 1;
mMatrix[p2][p1] = 1;
}
}

该函数是通过读取用户的输入,而将输入的数据转换成对应的无向图。

邻接矩阵无向图的完整源码

点击查看:源代码

邻接矩阵无向图(三)之 Java详解的更多相关文章

  1. 邻接矩阵有向图(三)之 Java详解

    前面分别介绍了邻接矩阵有向图的C和C++实现,本文通过Java实现邻接矩阵有向图. 目录 1. 邻接矩阵有向图的介绍 2. 邻接矩阵有向图的代码说明 3. 邻接矩阵有向图的完整源码 转载请注明出处:h ...

  2. 邻接表无向图(三)之 Java详解

    前面分别介绍了邻接表无向图的C和C++实现,本文通过Java实现邻接表无向图. 目录 1. 邻接表无向图的介绍 2. 邻接表无向图的代码说明 3. 邻接表无向图的完整源码 转载请注明出处:http:/ ...

  3. Floyd算法(三)之 Java详解

    前面分别通过C和C++实现了弗洛伊德算法,本文介绍弗洛伊德算法的Java实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3. 弗洛伊德算法的代码说明 4. 弗洛伊德算法的源码 转载请注明 ...

  4. Prim算法(三)之 Java详解

    前面分别通过C和C++实现了普里姆,本文介绍普里姆的Java实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里姆算法的代码说明 4. 普里姆算法的源码 转载请注明出处:http:// ...

  5. Kruskal算法(三)之 Java详解

    前面分别通过C和C++实现了克鲁斯卡尔,本文介绍克鲁斯卡尔的Java实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3. 克鲁斯卡尔算法图解 4. 克鲁斯卡尔算法分析 5. 克鲁斯卡尔算法的 ...

  6. 邻接矩阵无向图(二)之 C++详解

    本章是通过C++实现邻接矩阵无向图. 目录 1. 邻接矩阵无向图的介绍 2. 邻接矩阵无向图的代码说明 3. 邻接矩阵无向图的完整源码 转载请注明出处:http://www.cnblogs.com/s ...

  7. 拓扑排序(三)之 Java详解

    前面分别介绍了拓扑排序的C和C++实现,本文通过Java实现拓扑排序. 目录 1. 拓扑排序介绍 2. 拓扑排序的算法图解 3. 拓扑排序的代码说明 4. 拓扑排序的完整源码和测试程序 转载请注明出处 ...

  8. 邻接表有向图(三)之 Java详解

    前面分别介绍了邻接表有向图的C和C++实现,本文通过Java实现邻接表有向图. 目录 1. 邻接表有向图的介绍 2. 邻接表有向图的代码说明 3. 邻接表有向图的完整源码 转载请注明出处:http:/ ...

  9. 哈夫曼树(三)之 Java详解

    前面分别通过C和C++实现了哈夫曼树,本章给出哈夫曼树的java版本. 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载请注明出处:htt ...

随机推荐

  1. Vue.js多重组件嵌套

    Vue.js多重组件嵌套 Vue.js中提供了非常棒的组件化思想,组件提高了代码的复用性.今天我们来实现一个形如 <app> <app-header></app-head ...

  2. C++ 非阻塞套接字的使用 (2)

    继续话题——软件中的异步非阻塞通讯方式. 由于软件基于MFC开发,所以实现异步通讯时使用了CAsyncSocket类. 首先要了解CAsyncSocket异步机制,引用自 http://blog.cs ...

  3. python学习GUIwxpython不支持中文输出入的问题

    # -*- coding: utf8 -*- import wx def load(event): file = open(filename.GetValue()) contents.SetValue ...

  4. SQLSERVER的一个不显眼的功能 备份文件的分割

    SQLSERVER的一个不显眼的功能 备份文件的分割 当完整备份数据库的时候,我们有时候可能会遇到一种极端情况,比如服务器上C,D,E三个盘符都只剩下5G空间了 但是如果要完整备份业务库需要12G的空 ...

  5. C#异常Retry通用类

    系统里面常常调用服务和读写文件里面需要对发生异常,操作失败时进行Retry来尽可能程序的健壮性.最近工作中遇到了,参考了网上的资料,扩展了下.在博客里面备用下: //Retry机制 public st ...

  6. Linux下添加新硬盘,分区及挂载(转)

    挂载好新硬盘后输入fdisk -l命令看当前磁盘信息,卸载硬盘分区 umount /dev/sdb 可以看到除了当前的第一块硬盘外还有一块sdb的第二块硬盘,然后用fdisk /dev/sdb 进行分 ...

  7. git 本地库提交至远程服务器

    1. git init 2. git add . 3. git commit -am "###"      -------以上3步只是本地提交 4.git remote add o ...

  8. Javascript定时器学习笔记

    掌握定时器工作原理必知:JavaScript引擎是单线程运行的,浏览器无论在什么时候都只且只有一个线程在运行JavaScript程序. 常言道:setTimeout和setInterval是伪线程. ...

  9. 冲刺阶段 day 14

    项目进展 经过这几个星期的努力,我们已经完成了我们的软件工程项目,经过多次测试,项目已经可以准确无误地运行. 存在问题 测试期间,未发现问题. 心得体会 在这几个星期的努力下,我们终于完成了我们预期的 ...

  10. 【读书笔记】.Net并行编程高级教程--Parallel

    一直觉得自己对并发了解不够深入,特别是看了<代码整洁之道>觉得自己有必要好好学学并发编程,因为性能也是衡量代码整洁的一大标准.而且在<失控>这本书中也多次提到并发,不管是计算机 ...