[UCSD白板题] Take as Much Gold as Possible
Problem Introduction
This problem is about implementing an algorithm for the knapsack without repetitions problem.
Problem Description
Task.In this problem, you are given a set of bars of gold and your goal is to take as much gold as possible into you bag. There is just one copy of each bar and for each bar you can either take it or not(hence you cannot take a fraction of a bar).
Input Format.The first line of the input contains the capacity \(W\) of a knapsack and the number \(n\) of bars of gold. The next line contains \(n\) integers \(w_0, w_1. \cdots, w_{n-1}\) defining the weights of the bars of gold.
Constraints.\(1 \leq W \leq 10^4\); \(1 \leq n \leq 300\); \(0 \leq w_0, \cdots, w_{n-1} \leq 10^5\).
Output Format.Output the maximum weight of gold that fits into a knapsack of capacity \(W\).
Sample 1.
Input:
10 3
1 4 8
Output:
9
Solution
[UCSD白板题] Take as Much Gold as Possible的更多相关文章
- [UCSD白板题] Longest Common Subsequence of Three Sequences
Problem Introduction In this problem, your goal is to compute the length of a longest common subsequ ...
- [UCSD白板题] Maximize the Value of an Arithmetic Expression
Problem Introduction In the problem, your goal is to add parentheses to a given arithmetic expressio ...
- [UCSD白板题] Compute the Edit Distance Between Two Strings
Problem Introduction The edit distinct between two strings is the minimum number of insertions, dele ...
- [UCSD白板题] Primitive Calculator
Problem Introduction You are given a primitive calculator that can perform the following three opera ...
- [UCSD白板题] Points and Segments
Problem Introduction The goal in this problem is given a set of segments on a line and a set of poin ...
- [UCSD白板题] Number of Inversions
Problem Introduction An inversion of a sequence \(a_0,a_1,\cdots,a_{n-1}\) is a pair of indices \(0 ...
- [UCSD白板题] Sorting: 3-Way Partition
Problem Introduction The goal in this problem is to redesign a given implementation of the randomize ...
- [UCSD白板题] Majority Element
Problem Introduction An element of a sequence of length \(n\) is called a majority element if it app ...
- [UCSD白板题] Binary Search
Problem Introduction In this problem, you will implemented the binary search algorithm that allows s ...
随机推荐
- [学习笔记]JS中闭包的理解
一.闭包概念的理解 闭包,又称为词法闭包或函数闭包指引用了自由变量的函数.这个被引用的自由变量将和这个函数一同存在,即使已经离开了创造它的环境也不例外. 自由变量:该变量既不是函数本身定义的也不是函数 ...
- WPF触发器的使用
WPF中定义了五个触发器类:Trigger.MultiTrigger.DataTrigger.multiDataTrigger.EventTrigger.下面我来介绍一下怎么使用这几个触发器的使用方法 ...
- Delphi 中记录类型 给记录指针赋值。
PPersion=^TPersion; TPersion=packed record Name:string; Sex:string; Clasee:string; end ...
- Iterator(迭代器)-对象行为型模式
1.意图 提供一种方法顺序访问一个聚合对象中的各个元素,而又不暴露该对象的内部表示. 2.别名 Cursor-游标. 3.动机 一个聚合对象,应该提供一种方法来让别人可以访问它的元素,而又不需暴露它的 ...
- python学习之——操作浏览器
使用selenium的webdriver框架,对浏览器的常规操作,如下~~ #coding=utf-8 from selenium import webdriver import time from ...
- Hishop网站迁移后出现DataProtectionConfigurationProvider错误
错误代码如下: 配置错误 说明: 在处理向该请求提供服务所需的配置文件时出错.请检查下面的特定错误详细信息并适当地修改配置文件. 分析器错误信息: 未能使用提供程序“DataProtectionCon ...
- [转]学术型 github 畅想
转自 http://wulfric.me/2013/09/github-and-academy/ 以 github 的精神提供学术服务,也许是一个不错的方向. 什么是 github? Github 是 ...
- linux 怎么完全卸载mysql数据库
在linux下开发,mysql数据库是经常用到的,对于初学者来说,在linux怎么安装卸载mysql数据库,也许可能比较痛苦,这里简单介绍下,怎么卸载msql数据库. a)查看系统中是否以rpm包安装 ...
- ssh链接数设置问题
今天碰到一个问题,脚本执行scp文件拷贝,因为拷贝的服务器很多,所以拷贝脚本的实现是在把拷贝动作转后台执行,结果发现一堆文件拷贝失败.比较有迷惑性的是,拷贝失败的通常是同一个文件夹拷贝到所有服务器时失 ...
- 学霸网站---Alpha+版本测试报告
说明:由于老师前几天要求交测试报告,本测试报告只针对当时完成的功能进行测试,并不是几天之后要发布的BETA版本,不会有很多差别,但是BETA版本会包含对其中BUG的修复. 学霸网站测试报告 一.引言 ...