基本数学假设:各个维度上的特征被分类的条件概率之间是相互独立的。所以在特征关联性较强的分类任务上的性能表现不佳。

#coding=utf8
# 从sklearn.datasets里导入新闻数据抓取器fetch_20newsgroups。
from sklearn.datasets import fetch_20newsgroups
# 从sklearn.model_selection中导入train_test_split用于数据分割。
from sklearn.model_selection import train_test_split
# 与之前预存的数据不同,fetch_20newsgroups需要即时从互联网下载数据。
news = fetch_20newsgroups(subset='all')

# 随机采样25%的数据样本作为测试集。
X_train, X_test, y_train, y_test = train_test_split(news.data, news.target, test_size=0.25, random_state=33)
# 从sklearn.feature_extraction.text里导入用于文本特征向量转化模块。
from sklearn.feature_extraction.text import CountVectorizer

vec = CountVectorizer()
X_train = vec.fit_transform(X_train)
X_test = vec.transform(X_test)

# 从sklearn.naive_bayes里导入朴素贝叶斯模型。
from sklearn.naive_bayes import MultinomialNB

# 从使用默认配置初始化朴素贝叶斯模型。
mnb = MultinomialNB()
# 利用训练数据对模型参数进行估计。
mnb.fit(X_train, y_train)
# 对测试样本进行类别预测,结果存储在变量y_predict中。
y_predict = mnb.predict(X_test)

# 从sklearn.metrics里导入classification_report用于详细的分类性能报告。
from sklearn.metrics import classification_report
print 'The accuracy of Naive Bayes Classifier is', mnb.score(X_test, y_test)
print classification_report(y_test, y_predict, target_names=news.target_names)

结果:

chapter02 朴素贝叶斯分类器对新闻文本数据进行类型预测的更多相关文章

  1. 机器学习之路: python 朴素贝叶斯分类器 MultinomialNB 预测新闻类别

    使用python3 学习朴素贝叶斯分类api 设计到字符串提取特征向量 欢迎来到我的git下载源代码: https://github.com/linyi0604/MachineLearning fro ...

  2. (数据科学学习手札30)朴素贝叶斯分类器的原理详解&Python与R实现

    一.简介 要介绍朴素贝叶斯(naive bayes)分类器,就不得不先介绍贝叶斯决策论的相关理论: 贝叶斯决策论(bayesian decision theory)是概率框架下实施决策的基本方法.对分 ...

  3. 文本分类(TFIDF/朴素贝叶斯分类器/TextRNN/TextCNN/TextRCNN/FastText/HAN)

    目录 简介 TFIDF 朴素贝叶斯分类器 贝叶斯公式 贝叶斯决策论的理解 极大似然估计 朴素贝叶斯分类器 TextRNN TextCNN TextRCNN FastText HAN Highway N ...

  4. 用scikit-learn实现朴素贝叶斯分类器 转

    原文:http://segmentfault.com/a/1190000002472791 朴素贝叶斯(Naive Bayes Classifier)是一种「天真」的算法(假定所有特征发生概率是独立的 ...

  5. python实现随机森林、逻辑回归和朴素贝叶斯的新闻文本分类

    实现本文的文本数据可以在THUCTC下载也可以自己手动爬虫生成, 本文主要参考:https://blog.csdn.net/hao5335156/article/details/82716923 nb ...

  6. 机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)

    朴素贝叶斯分类器是一组简单快速的分类算法.网上已经有很多文章介绍,比如这篇写得比较好:https://blog.csdn.net/sinat_36246371/article/details/6014 ...

  7. 数据挖掘十大经典算法(9) 朴素贝叶斯分类器 Naive Bayes

    贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类.眼下研究较多的贝叶斯分类器主要有四种, ...

  8. 十大经典数据挖掘算法(9) 朴素贝叶斯分类器 Naive Bayes

    贝叶斯分类器 贝叶斯分类分类原则是一个对象的通过先验概率.贝叶斯后验概率公式后计算,也就是说,该对象属于一类的概率.选择具有最大后验概率的类作为对象的类属.现在更多的研究贝叶斯分类器,有四个,每间:N ...

  9. 朴素贝叶斯分类器(Naive Bayes)

    1. 贝叶斯定理 如果有两个事件,事件A和事件B.已知事件A发生的概率为p(A),事件B发生的概率为P(B),事件A发生的前提下.事件B发生的概率为p(B|A),事件B发生的前提下.事件A发生的概率为 ...

随机推荐

  1. django查询操作

    查询操作是Django的ORM框架中最重要的内容之一.我们建立模型.保存数据为的就是在需要的时候可以查询得到数据.Django自动为所有的模型提供了一套完善.方便.高效的API,一些重要的,我们要背下 ...

  2. [原][osg][osgEarth]关于在OE中使用物理引擎的调研

    关于物理引擎旋转的一些整理 参考文档 http://blog.wolfire.com/2010/03/Comparing-ODE-and-Bullet 介绍ODE和bullet的利弊 http://s ...

  3. Linux 之 ./configure --prefix 命令

    参考 http://blog.sina.com.cn/s/blog_406127500101dsmy.html 源码的安装一般由3个步骤组成:配置(configure).编译(make).安装(mak ...

  4. onLoad和DomContentLoad的区别

    onLoad是的在页面所有文件加载完成后执行 DomContentLoad是Dom加载完成后执行,不必等待样式脚本和图片加载 domContentLoad更为合理, 原理: 如果是webkit引擎则轮 ...

  5. Web端主流框架,jquery、angular、react、vue

    不得不说,前端技术发展非常迅速,时不多久就有一个新的东西冒出来,并且迅速膨胀发展,让旁观者眼花缭乱,让开发者目眩神迷,但总体上来说,这波互联网大浪潮带动了前端技术的大发展,给曾经那些苦苦挣扎于DOM操 ...

  6. 20170729xlVba SSC_RECENT100

    Public Sub Recent100() Dim WebText As String Dim Reg As Object, Mh As Object, OneMh As Object Dim i ...

  7. Docker 构建 redis 集群

    安装docker 1.yum install docker 方法一: 1. docker pull redis 2.docker run -d --name redis-1 -p 7001:6379 ...

  8. 『科学计算』通过代码理解SoftMax多分类

    SoftMax实际上是Logistic的推广,当分类数为2的时候会退化为Logistic分类 其计算公式和损失函数如下, 梯度如下, 1{条件} 表示True为1,False为0,在下图中亦即对于每个 ...

  9. python-day27--configparser模块

    1.来看一个好多软件的常见文档格式如下: [DEFAULT] ServerAliveInterval = 45 Compression = yes CompressionLevel = 9 Forwa ...

  10. 最小生成树(模板 Kruskal)

    Description 某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离.省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达 ...