【CF878E】Numbers on the blackboard

题意:给你一个长度为n个数列,你每次可以进行如下操作:

选取两个相邻的数x,y(x在y左面),然后将这两个数去掉,用x+2y替换它。

重复此操作直到序列中只有一个数为止。你可以任意决定每次合并哪两个数,求最后得到的数的最大值。

为了加大难度,现有q次询问,每次询问给出l,r,问你对[l,r]这段区间进行操作能得到的最大值是什么。

n,q<=100000,ai<=10^9

题解:先不考虑l,r的限制,整个操作可以看成:让你最大化$\sum a_i\times 2^{k_i},k_0=0,1<=k_i<=k_{i-1}+1$。我们从左往右逐个加入每个数,如果ai是负数,我们直接令$k_i=1$;否则我们令$k_i=k_{i-1}+1$。这样的话最终得到的k一定是分为若干段,每段(除了第一段)都是开头的k=1,然后k不断++。我们还需要判断:在加入ai后,如果最后一段合并之后的和变成了正数,那么还要将最后一段整体向前合并,直到和为负数为止。

如果考虑l,r呢?我们可以离线,对于r=i,我们用并查集找到l所在的块,然后统计一下答案即可。

在判断一个块内合并后总和是否是正数时要讨论一下。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <vector>
#include <utility>
using namespace std;
#define mp(A,B) make_pair(A,B)
typedef long long ll;
const ll P=1000000007;
const ll inv=500000004;
const int maxn=100010;
int n,m;
int f[maxn],pre[maxn];
ll v[maxn],s[maxn],sum[maxn],ans[maxn],pw[maxn],sp[maxn];
vector<pair<int,int> > q[maxn];
vector<pair<int,int> >::iterator it;
int find(int x)
{
return (f[x]==x)?x:(f[x]=find(f[x]));
}
inline void merge(int a,int b)
{
if((a-pre[a]>31&&sum[b]>0)||sum[a]+(sum[b]<<(a-pre[a]))>P) sum[b]=P;
else sum[b]=sum[a]+(sum[b]<<(a-pre[a]));
f[a]=f[b],pre[b]=pre[a];
}
inline ll query(int a,int b)
{
return (s[a]-s[b+1]*pw[b-a+1]%P+P)%P;
}
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
int main()
{
n=rd(),m=rd();
int i,a,b;
for(pw[0]=i=1;i<=n;i++) f[i]=i,pre[i]=i-1,v[i]=rd(),pw[i]=(pw[i-1]<<1)%P;
for(i=n;i>=1;i--) s[i]=((s[i+1]<<1)+v[i]+P)%P;
for(i=1;i<=m;i++) a=rd(),b=rd(),q[b].push_back(mp(a,i));
for(i=1;i<=n;i++)
{
sum[i]=v[i];
while(pre[i]&&sum[i]>=0) merge(pre[i],i);
sp[i]=(sp[pre[i]]+(query(pre[i]+1,i)<<1))%P;
for(it=q[i].begin();it!=q[i].end();it++)
{
a=(*it).first,b=find(a);
ans[(*it).second]=(sp[i]-sp[b]+query(a,b)+P)%P;
}
}
for(i=1;i<=m;i++) printf("%I64d\n",ans[i]);
return 0;
}

【CF878E】Numbers on the blackboard 并查集的更多相关文章

  1. CF 878E Numbers on the blackboard 并查集 离线 贪心

    LINK:Numbers on the blackboard 看完题觉得很难. 想了一会发现有点水 又想了一下发现有点困难. 最终想到了 但是实现的时候 也很难. 先观察题目中的这个形式 使得前后两个 ...

  2. Codeforces 878 E. Numbers on the blackboard

    Codeforces 878 E. Numbers on the blackboard 解题思路 有一种最优策略是每次选择最后面一个大于等于 \(0\) 的元素进行合并,这样做完以后相当于给这个元素乘 ...

  3. POJ2985 The k-th Largest Group[树状数组求第k大值+并查集||treap+并查集]

    The k-th Largest Group Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 8807   Accepted ...

  4. POJ1703Find them, Catch them[种类并查集]

    Find them, Catch them Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 42416   Accepted: ...

  5. POJ 1703 Find them, Catch them(带权并查集)

    传送门 Find them, Catch them Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 42463   Accep ...

  6. *HDU1829 并查集

    A Bug's Life Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  7. [并查集] POJ 1703 Find them, Catch them

    Find them, Catch them Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 43132   Accepted: ...

  8. poj1417 带权并查集 + 背包 + 记录路径

    True Liars Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2713   Accepted: 868 Descrip ...

  9. poj1984 带权并查集(向量处理)

    Navigation Nightmare Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 5939   Accepted: 2 ...

随机推荐

  1. Java并发包学习一 ThreadFactory介绍

    ThreadFactory翻译过来是线程工厂,顾名思义,就是用来创建线程的,它用到了工厂模式的思想.它通常和线程池一起使用,主要用来控制创建新线程时的一些行为,比如设置线程的优先级,名字等等.它是一个 ...

  2. Android学习笔记——Intents 和 Intent Filters(二)

    本人邮箱:JohnTsai.Work@gmail.com,欢迎交流讨论. 欢迎转载,转载请注明网址:http://www.cnblogs.com/JohnTsai/p/3993488.html 知识点 ...

  3. nvm安装node和npm,个人踩坑记录

    我采用nvm-setup安装windows版本的nvm nvm安装node出现的问题: 1.node成功了,npm没成功 解决:在nvm 安装了node之后,输入npm找不到该命令,当时安装报错如下: ...

  4. java中*和**的作用

    “*”就表示了所有的文件,但是“*”并不包括子目录下的文件: “**”匹配包含任意级子目录中所有的文件

  5. 怎么解决BarTender因为未检测到IIS安装失败的问题

    个别小伙伴在安装BarTender条码标签设计软件的时候,遇到“未检测到IIS,无法安装BarTender Web Print Server配套程序”导致安装失败的问题,本文小编给大家分享解决BarT ...

  6. 【搞笑签名】390个qq个性昵称或签名,周末前娱乐一下

    1 来瓶82年的矿泉水 2 名不正则言承旭 3 天涯何处无芳草,还是母乳喂养好 4 她的妈妈不爱我 5 你丫的 6 农夫三拳 7 猪嚼在恋√痛 8 马驴脸猛鹿 9 小白兔兽性大发 10 曰捣一乱 11 ...

  7. 临时解决Apache服务器假死的参数配置

    <IfModule mpm_prefork_module> StartServers MinSpareServers MaxSpareServers MaxClients MaxReque ...

  8. 条件独立(conditional independence) 结合贝叶斯网络(Bayesian network) 概率有向图 (PRML8.2总结)

    本文会利用到上篇,博客的分解定理,需要的可以查找上篇博客 D-separation对任何用有向图表示的概率模型都成立,无论随机变量是离散还是连续,还是两者的结合. 部分图为手写,由于本人字很丑,望见谅 ...

  9. ajax之cache血与泪~~

    场景:项目以ie5渲染页面,点击导出列表数据(Excel形式),点击导出发送get请求,后台生成Excel文件,返回文件地址信息 异常:ie第一次返回的信息正常,之后返回的都是第一次的结果,googl ...

  10. ios开发之--VC的生命周期

    当一个视图控制器被创建,并在屏幕上显示的时候. 代码的执行顺序 1. alloc                                   创建对象,分配空间 2.init (initWit ...