【CF932G】Palindrome Partition 回文自动机
【CF932G】Palindrome Partition
题意:给你一个字符串s,问你有多少种方式,可以将s分割成k个子串,设k个子串是$x_1x_2...x_k$,满足$x_1=x_k,x_2=x_{k-1}...x_i=x{k-i+1}$。
$|s|\le 10^6$
题解:设字符串的长度为n,考虑字符串$T=s_1s_ns_2s_{n-1}...$。问题就转化成了:求将原串划分成若干个长度为偶数的回文子串的方案数。
首先我们有一种暴力的想法,设f[i]表示将前i个字符分成若干个回文子串的方案数,先跑回文自动机或Manacher得到所有$O(n^2)$个回文串。然后有转移方程$f[i]=\sum f[j] [s(i,j)是回文串]$,特别地,对于奇数的i,f[i]=0。
但是观察发现,如果$s(1,i)=A+DD..DT$,其中$T,DT,DDT...$都是回文串,那么显然有转移$f[i]=f[i-|T|]+f[i-|DT|]+...$,而注意到对于$i-|T|$这个位置,也存在转移$f[i-|T|]=f[i-|DT|]+f[i-|DDT|]+...$。也就是说,f[i]和f[i-|T|]有相当多的转移是相同的!我们能不能利用这个性质来优化我们的算法呢?
接着,对于回文自动机上的每个节点,我们定义$diff[i]=len[i]-len[fail[i]]$,$sf[i]$表示i沿着fail指针往上走,走到的第一个$diff$与i不同的祖先。我们是不是可以把fail链上连续的diff相同的点放在一起呢?当然是可以的,有如下结论:
引理1:从一个点沿着sf指针向上走,最多走log步就能到达根节点。
证明很复杂,不过有一种比较容易的感性理解方法:就是当diff<len/2的时候,diff一定不变;diff>len/2的时候,diff又一定改变(画画图能看出来)。所以每次len缩小一半,长度就是log的了。
为了保证正确性,我们还需要证明一个东西:
引理2:设j是i对应的节点在fail树上的一个祖先,且diff[j]!=diff[fail[j]],则在所有以i-diff[j]结尾的回文串中,长度最长的为len[j]-diff[j]。
这个也不太会证,画画图吧~
不过引理2保证了我们直接调用f[i-diff[j]]时不会统计到无关的信息。现在我们可以将diff相同的部分放到一起处理了,只需要维护一个类似于前缀和的东西,到时候暴力沿着sf向上走统计答案即可。具体可见代码。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int P=1000000007;
const int maxn=1000010;
inline void upd(int &x,const int &y) {x+=y; if(x>=P) x-=P;}
int f[maxn],g[maxn];
int n,last,tot;
int ch[maxn][26],fa[maxn],len[maxn],diff[maxn],sf[maxn];
char ss[maxn],str[maxn];
inline void extend(int x)
{
int p=last,c=str[x]-'a';
for(;str[x-len[p]-1]!=str[x];p=fa[p]);
if(!ch[p][c])
{
int np=++tot,q=fa[p]; len[np]=len[p]+2;
for(;str[x-len[q]-1]!=str[x];q=fa[q]);
fa[np]=ch[q][c];
ch[p][c]=np;
diff[np]=len[np]-len[fa[np]];
if(diff[np]==diff[fa[np]]) sf[np]=sf[fa[np]];
else sf[np]=fa[np];
}
last=ch[p][c];
}
int main()
{
scanf("%s",ss+1),n=strlen(ss+1);
int i,p;
for(i=1;i+i<=n;i++) str[i*2-1]=ss[i],str[i*2]=ss[n+1-i];
tot=fa[0]=1,len[1]=-1;
f[0]=1;
for(i=1;i<=n;i++)
{
extend(i);
p=last;
for(p=last;p>1;p=sf[p])
{
g[p]=f[i-len[sf[p]]-diff[p]];
if(diff[p]==diff[fa[p]]) upd(g[p],g[fa[p]]);
upd(f[i],g[p]);
}
if(i&1) f[i]=0;
}
printf("%d",f[n]);
return 0;
}
【CF932G】Palindrome Partition 回文自动机的更多相关文章
- CF932G Palindrome Partition(回文自动机)
CF932G Palindrome Partition(回文自动机) Luogu 题解时间 首先将字符串 $ s[1...n] $ 变成 $ s[1]s[n]s[2]s[n-1]... $ 就变成了求 ...
- [2019杭电多校第二场][hdu6599]I Love Palindrome String(回文自动机&&hash)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6599 题目大意为求字符串S有多少个子串S[l,r]满足回文串的定义,并且S[l,(l+r)/2]也满足 ...
- 2019牛客暑期多校训练营(第六场)C - Palindrome Mouse (回文自动机)
https://ac.nowcoder.com/acm/contest/886/C 题意: 给出一个串A , 集合S里面为A串的回文字串 , 现在在集合S里面找出多少对(a,b),b为a的字串 分析: ...
- hdu多校第二场1009 (hdu6599) I Love Palindrome String 回文自动机/字符串hash
题意: 找出这样的回文子串的个数:它本身是一个回文串,它的前一半也是一个回文串 输出格式要求输出l个数字,分别代表长度为1~l的这样的回文串的个数 题解: (回文自动机和回文树是一个东西) 首先用回文 ...
- Codeforces 932G Palindrome Partition - 回文树 - 动态规划
题目传送门 通往???的传送点 通往神秘地带的传送点 通往未知地带的传送点 题目大意 给定一个串$s$,要求将$s$划分为$t_{1}t_{2}\cdots t_{k}$,其中$2\mid k$,且$ ...
- Codeforces 932G Palindrome Partition 回文树+DP
题意:给定一个串,把串分为偶数段 假设分为$s_1,s_2,s_3....s_k$ 求满足$ s_1=s_k,s_2=s_{ k-1 }... $的方案数模$10^9+7$ $|S|\leq 10^6 ...
- 2019 Multi-University Training Contest 2 I.I Love Palindrome String(回文自动机+字符串hash)
Problem Description You are given a string S=s1s2..s|S| containing only lowercase English letters. F ...
- WHU 583 Palindrome ( 回文自动机 && 本质不同的回文串的个数 )
题目链接 题意 : 给你一个串.要你将其划分成两个串.使得左边的串的本质不同回文子串的个数是右边串的两倍.对于每一个这样子的划分.其对答案的贡献就是左边串的长度.现在要你找出所有这样子的划分.并将贡献 ...
- HDU-6599 I Love Palindrome String(回文自动机+字符串hash)
题目链接 题意:给定一个字符串\(|S|\le 3\times 10^5\) 对于每个 \(i\in [1,|S|]\) 求有多少子串\(s_ls_{l+1}\cdots s_r\)满足下面条件 \( ...
随机推荐
- windows server 2003R2\2008R2\2012\2016 安装【故障转移群集】cluster
温故而知新! 靠,突然觉得it技能只要一年的时间就能忘记! virtualbox虚拟机安装群集,注意点: clone的虚拟机,sid问题.sysprep太慢了,不如重新安装快! 虚拟机增强组件,会影响 ...
- 站长常用的200个js代码 站长常用js代码大全 站长常用js代码集合
站长常用的200个js代码 1.文本框焦点问题 onBlur:当失去输入焦点后产生该事件 onFocus:当输入获得焦点后,产生该文件 Onchange:当文字值改变时,产生该事件 Onselect: ...
- position absolute定位之所属的containing box
http://www.w3.org/TR/CSS2/visudet.html#containing-block-details http://www.zhihu.com/question/199267 ...
- linux添加PYTHONPATH环境变量
1.添加环境变量到pythonpath export PYTHONPATH=$PYTHONPATH:/home/myproject 查看pythonpathecho $PYTHONPATH 可以进入p ...
- 解压安装的tomcat, 使用chkconfig命令让tomcat 随机启动,tomcat 变为系统服务
使用解压安装的tomcat包,命令行输入 service tomcat start 会报 tomcat: unrecognized service 错误提示,意思是说系统没有找到该服务. 好了,我们现 ...
- HTML5的一个写下拉文本框标签
新的HTML5有个标签,能够下拉的文本框 代码如下 <input list="browsers"> <datalist id="browsers&quo ...
- ajax简单手写了一个猜拳游戏
使用ajax简单写一个猜拳游戏 HTML代码 <!DOCTYPE HTML> <html lang="en-US"> <head> <me ...
- IE8兼容性调试及IE 8 css hack
做网站开发,一提到IE,就会让人头大,有一肚子的牢骚要发:微软为什么不跟着国际标准走呢,总是独树一帜,搞出那么多问题来.IE的firebug调试工具也不太好用,尤其是低版本的IE,更是让人头疼. 最近 ...
- 【SVN】自动定时更新
程序或脚本:"C:\Program Files\TortoiseSVN\bin\svn.exe" 参数:update E:\XXXXProjects\Code 参考:https:/ ...
- 【Python】Linux Acanoda PySpark Spark
1.安装 Acanoda 2.安装 Spark和Scala 3.安装 PySpark 4.将Spark的Python目录拷贝至 Acanoda目录下 5.安装py4j,切换anaconda中bin目 ...