The Doors

http://poj.org/problem?id=1556

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 10466   Accepted: 3891

Description

You are to find the length of the shortest path through a chamber containing obstructing walls. The chamber will always have sides at x = 0, x = 10, y = 0, and y = 10. The initial and final points of the path are always (0, 5) and (10, 5). There will also be from 0 to 18 vertical walls inside the chamber, each with two doorways. The figure below illustrates such a chamber and also shows the path of minimal length. 

Input

The input data for the illustrated chamber would appear as follows.


4 2 7 8 9 
7 3 4.5 6 7

The first line contains the number of interior walls. Then there is a line for each such wall, containing five real numbers. The first number is the x coordinate of the wall (0 < x < 10), and the remaining four are the y coordinates of the ends of the doorways in that wall. The x coordinates of the walls are in increasing order, and within each line the y coordinates are in increasing order. The input file will contain at least one such set of data. The end of the data comes when the number of walls is -1.

Output

The output should contain one line of output for each chamber. The line should contain the minimal path length rounded to two decimal places past the decimal point, and always showing the two decimal places past the decimal point. The line should contain no blanks.

Sample Input

1
5 4 6 7 8
2
4 2 7 8 9
7 3 4.5 6 7
-1

Sample Output

10.00
10.06

Source

有18堵墙!!!因为没看清这个疯狂爆RE

poj上交C++会CE,要自己写hypot函数

double hypot(double x,double y){
return sqrt(x*x+y*y);
}
 #include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<vector>
#include<algorithm>
using namespace std;
const double eps=1e-;
const double INF=1e20;
const double PI=acos(-1.0);
const int maxp=;
int sgn(double x){
if(fabs(x)<eps) return ;
if(x<) return -;
else return ;
}
inline double sqr(double x){return x*x;}
struct Point{
double x,y;
Point(){}
Point(double _x,double _y){
x=_x;
y=_y;
}
void input(){
scanf("%lf %lf",&x,&y);
}
void output(){
printf("%.2f %.2f\n",x,y);
}
bool operator == (const Point &b)const{
return sgn(x-b.x) == && sgn(y-b.y)== ;
}
bool operator < (const Point &b)const{
return sgn(x-b.x)==?sgn(y-b.y)<:x<b.x;
}
Point operator - (const Point &b)const{
return Point(x-b.x,y-b.y);
}
//叉积
double operator ^ (const Point &b)const{
return x*b.y-y*b.x;
}
//点积
double operator * (const Point &b)const{
return x*b.x+y*b.y;
}
//返回长度
double len(){
return hypot(x,y);
}
//返回长度的平方
double len2(){
return x*x+y*y;
}
//返回两点的距离
double distance(Point p){
return hypot(x-p.x,y-p.y);
}
Point operator + (const Point &b)const{
return Point(x+b.x,y+b.y);
}
Point operator * (const double &k)const{
return Point(x*k,y*k);
}
Point operator / (const double &k)const{
return Point(x/k,y/k);
} //计算pa和pb的夹角
//就是求这个点看a,b所成的夹角
///LightOJ1202
double rad(Point a,Point b){
Point p=*this;
return fabs(atan2(fabs((a-p)^(b-p)),(a-p)*(b-p)));
}
//化为长度为r的向量
Point trunc(double r){
double l=len();
if(!sgn(l)) return *this;
r/=l;
return Point(x*r,y*r);
}
//逆时针转90度
Point rotleft(){
return Point(-y,x);
}
//顺时针转90度
Point rotright(){
return Point(y,-x);
}
//绕着p点逆时针旋转angle
Point rotate(Point p,double angle){
Point v=(*this) -p;
double c=cos(angle),s=sin(angle);
return Point(p.x+v.x*c-v.y*s,p.y+v.x*s+v.y*c);
}
}; struct Line{
Point s,e;
Line(){}
Line(Point _s,Point _e){
s=_s;
e=_e;
}
bool operator==(Line v){
return (s==v.s)&&(e==v.e);
}
//根据一个点和倾斜角angle确定直线,0<=angle<pi
Line(Point p,double angle){
s=p;
if(sgn(angle-PI/)==){
e=(s+Point(,));
}
else{
e=(s+Point(,tan(angle)));
}
}
//ax+by+c=0;
Line(double a,double b,double c){
if(sgn(a)==){
s=Point(,-c/b);
e=Point(,-c/b);
}
else if(sgn(b)==){
s=Point(-c/a,);
e=Point(-c/a,);
}
else{
s=Point(,-c/b);
e=Point(,(-c-a)/b);
}
}
void input(){
s.input();
e.input();
}
void adjust(){
if(e<s) swap(s,e);
}
//求线段长度
double length(){
return s.distance(e);
}
//返回直线倾斜角 0<=angle<pi
double angle(){
double k=atan2(e.y-s.y,e.x-s.x);
if(sgn(k)<) k+=PI;
if(sgn(k-PI)==) k-=PI;
return k;
}
//点和直线的关系
//1 在左侧
//2 在右侧
//3 在直线上
int relation(Point p){
int c=sgn((p-s)^(e-s));
if(c<) return ;
else if(c>) return ;
else return ;
}
//点在线段上的判断
bool pointonseg(Point p){
return sgn((p-s)^(e-s))==&&sgn((p-s)*(p-e))<=;
}
//两向量平行(对应直线平行或重合)
bool parallel(Line v){
return sgn((e-s)^(v.e-v.s))==;
}
//两线段相交判断
//2 规范相交
//1 非规范相交
//0 不相交
int segcrossseg(Line v){
int d1=sgn((e-s)^(v.s-s));
int d2=sgn((e-s)^(v.e-s));
int d3=sgn((v.e-v.s)^(s-v.s));
int d4=sgn((v.e-v.s)^(e-v.s));
if((d1^d2)==-&&(d3^d4)==-) return ;
return (d1==&&sgn((v.s-s)*(v.s-e))<=||
d2==&&sgn((v.e-s)*(v.e-e))<=||
d3==&&sgn((s-v.s)*(s-v.e))<=||
d4==&&sgn((e-v.s)*(e-v.e))<=);
}
//直线和线段相交判断
//-*this line -v seg
//2 规范相交
//1 非规范相交
//0 不相交
int linecrossseg(Line v){
int d1=sgn((e-s)^(v.s-s));
int d2=sgn((e-s)^(v.e-s));
if((d1^d2)==-) return ;
return (d1==||d2==);
}
//两直线关系
//0 平行
//1 重合
//2 相交
int linecrossline(Line v){
if((*this).parallel(v))
return v.relation(s)==;
return ;
}
//求两直线的交点
//要保证两直线不平行或重合
Point crosspoint(Line v){
double a1=(v.e-v.s)^(s-v.s);
double a2=(v.e-v.s)^(e-v.s);
return Point((s.x*a2-e.x*a1)/(a2-a1),(s.y*a2-e.y*a1)/(a2-a1));
}
//点到直线的距离
double dispointtoline(Point p){
return fabs((p-s)^(e-s))/length();
}
//点到线段的距离
double dispointtoseg(Point p){
if(sgn((p-s)*(e-s))<||sgn((p-e)*(s-e))<)
return min(p.distance(s),p.distance(e));
return dispointtoline(p);
}
//返回线段到线段的距离
//前提是两线段不相交,相交距离就是0了
double dissegtoseg(Line v){
return min(min(dispointtoseg(v.s),dispointtoseg(v.e)),min(v.dispointtoseg(s),v.dispointtoseg(e)));
}
//返回点P在直线上的投影
Point lineprog(Point p){
return s+(((e-s)*((e-s)*(p-s)))/((e-s).len2()));
}
//返回点P关于直线的对称点
Point symmetrypoint(Point p){
Point q=lineprog(p);
return Point(*q.x-p.x,*q.y-p.y);
}
}; Line L[];
int n; bool Check(Line a,Line b){
if(sgn((a.s-a.e)^(b.s-a.e))*sgn((a.s-a.e)^(b.e-a.e))>) return false;
if(sgn((b.s-b.e)^(a.s-b.e))*sgn((b.s-b.e)^(a.e-b.e))>) return false;
if(sgn(max(a.s.x,a.e.x)-min(b.s.x,b.e.x))>=&&sgn(max(b.s.x,b.e.x)-min(a.s.x,a.e.x))>=
&&sgn(max(a.s.y,a.e.y)-min(b.s.y,b.e.y))>=&&sgn(max(b.s.y,b.e.y)-min(a.s.y,a.e.y))>=)
return true;
else return false;
} double mp[][]; int co; void panduan(Line a,int xx,int yy){
if(a.s.y==||a.s.y==||a.e.y==||a.e.y==) return;
for(int i=;i<co;i++){
if(i!=(xx+)/&&i!=(yy+)/){
if(Check(a,L[i])){
return;
}
}
}
//cout<<xx<<" "<<yy<<" "<<a.length()<<endl; mp[xx][yy]=mp[yy][xx]=a.length();
} int main(){
while(~scanf("%d",&n)){
if(n==-) break;
double x,y1,y2,y3,y4;
co=;
for(int i=;i<;i++){
for(int j=;j<;j++){
mp[i][j]=INF;
}
}
Point s,e;
s.x=,s.y=;
e.x=,e.y=;
//起点为0,终点为co
for(int i=;i<=n;i++){
scanf("%lf %lf %lf %lf %lf",&x,&y1,&y2,&y3,&y4);
L[co].s.x=x,L[co].s.y=,L[co].e.x=x,L[co++].e.y=y1;
L[co].s.x=x,L[co].s.y=y2,L[co].e.x=x,L[co++].e.y=y3;
L[co].s.x=x,L[co].s.y=y4,L[co].e.x=x,L[co++].e.y=;
} Line tmp;
int j;
//不包括起点和终点的建图
for(int i=;i<co;i++){
for(int j=i+;j<co;j++){
tmp.s=L[i].s,tmp.e=L[j].s;
panduan(tmp,(i-)*+,(j-)*+);
tmp.s=L[i].s,tmp.e=L[j].e;
panduan(tmp,(i-)*+,(j-)*+);
tmp.s=L[i].e,tmp.e=L[j].s;
panduan(tmp,(i-)*+,(j-)*+);
tmp.s=L[i].e,tmp.e=L[j].e;
panduan(tmp,(i-)*+,(j-)*+);
}
}
//加上起点和终点
for(int i=;i<co;i++){
tmp.s=s,tmp.e=L[i].s;
panduan(tmp,,(i-)*+);
tmp.s=s,tmp.e=L[i].e;
panduan(tmp,,(i-)*+);
tmp.s=e,tmp.e=L[i].s;
panduan(tmp,(i-)*+,);
tmp.s=e,tmp.e=L[i].e;
panduan(tmp,(i-)*+,);
}
tmp.s=s,tmp.e=e;
panduan(tmp,,);
for(int k=;k<=;k++)
for(int i=;i<=;i++)
for(int j=;j<=;j++)
if(mp[i][j]>mp[i][k]+mp[k][j]+eps)
mp[i][j]=mp[i][k]+mp[k][j];
printf("%.2f\n",mp[][]);
}
return ;
}

The Doors(几何+最短路,好题)的更多相关文章

  1. poj1511/zoj2008 Invitation Cards(最短路模板题)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Invitation Cards Time Limit: 5 Seconds    ...

  2. HDU 5521.Meeting 最短路模板题

    Meeting Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  3. hdu-3790最短路刷题

    title: hdu-3790最短路刷题 date: 2018-10-20 14:50:31 tags: acm 刷题 categories: ACM-最短路 概述 一道最短路的水题,,,尽量不看以前 ...

  4. [poj2449]Remmarguts' Date(K短路模板题,A*算法)

    解题关键:k短路模板题,A*算法解决. #include<cstdio> #include<cstring> #include<algorithm> #includ ...

  5. 牛客小白月赛6 I 公交线路 最短路 模板题

    链接:https://www.nowcoder.com/acm/contest/136/I来源:牛客网 题目描述 P市有n个公交站,之间连接着m条道路.P市计划新开设一条公交线路,该线路从城市的东站( ...

  6. POJ 1556 The Doors --几何,最短路

    题意: 给一个正方形,从左边界的中点走到右边界的中点,中间有一些墙,问最短的距离是多少. 解法: 将起点,终点和所有墙的接触到空地的点存下来,然后两两之间如果没有线段(墙)阻隔,就建边,最后跑一个最短 ...

  7. 2018.07.06 POJ1556 The Doors(最短路)

    The Doors Time Limit: 1000MS Memory Limit: 10000K Description You are to find the length of the shor ...

  8. POJ 4046 Sightseeing 枚举+最短路 好题

    有n个节点的m条无向边的图,节点编号为1~n 然后有点权和边权,给出q个询问,每一个询问给出2点u,v 输出u,v的最短距离 这里的最短距离规定为: u到v的路径的所有边权+u到v路径上最大的一个点权 ...

  9. POJ 1556 The Doors(计算几何+最短路)

    这题就是,处理出没两个点.假设能够到达,就连一条边,推断可不能够到达,利用线段相交去推断就可以.最后求个最短路就可以 代码: #include <cstdio> #include < ...

随机推荐

  1. VS2005常用快捷键

    Visual C++ 2005有很多种快捷键的映射方案,有适合 Emacs 用户的,有适合 Visual C++ 6.0 用户的,也有 Visual Studio 2005的,下面的快捷键符合IDE默 ...

  2. Notepad++ 删除空白行的方法(转)

    Notepad++ 是我特别喜欢的一款编程工具.在安装后就可以轻松使用了.Notepad++ 上提供了很多方便的插件以实现更多的扩展,当然自身已经比较强大好用了.如果你遇到文本中间有大量的空白行的话, ...

  3. 解决 pycharm can not save setting

    这个问题出现的原因是因为PyCharm中存在相同名字的虚拟环境变量. 解决方法:Configure Python Interpreter 点击右上角齿轮状按钮, 选择 show all,然后删除相同名 ...

  4. securecrt8注册码

    securecrt8注册码,两个可用 Name:meisiCompany:TEAM ZWTSerial Number:03-14-367662License Key:ACCFAX R9FHJ7 QZV ...

  5. 求m-n之间数字的和

    unction sum(m,n){         var sum = 0;         if(m>n){                 for(var i=n; i<=m; i++ ...

  6. SQL SERVER回滚恢复误操作的数据

    在生产数据库做CURD操作时,可能会有执行某条语句误操作的情况发生,针对这个种情况有两点建议: 1. 在SQL SERVER上开启事务确认功能,当执行完语句后确认无误,再提交事务.(开启方法见附件图片 ...

  7. sqlserver操作命令

    启动命令:Net Start MSSqlServer 暂停命令:Net Pause MSSqlServer 重新启动暂停的命令:Net Continue MSSqlServer 停止命令:Net st ...

  8. java开发-问题清单

    本人是做Java开发的,这是我参加58,搜狐,搜狗,新浪微博,百度,腾讯文学,网易以及其他一些小的创业型公司的面试常被问的问题,当然有重复,弄清楚这些 1. junit用法,before,before ...

  9. MYSQL三大范式

    第一范式:确保每列的原子性. 第一范式是最基本的范式. 数据库表中的字段都是单一属性的,不可再分. 只要是关系数据库都满足第一范式 如果每列(或者每个属性)都是不可再分的最小数据单元(也称为最小的原子 ...

  10. css 学习网址

    http://www.divcss5.com/ http://www.divcss5.com/css3/  css3手册 http://www.divcss5.com/shouce/ css手册 ht ...