这段时间一直在用kettle做数据抽取和报表,写SQL便是家常便饭了,200行+SQL经常要写。甚至写过最长的一个SQL500多行将近600行。这么长的SQL估计大部分人连看的意愿都没有,读起来也比较坑爹,我一般是把这种长SQL分成几个子SQL,测试好了再组装起来。SQL语句写的越多也就越可能出现性能问题。优化SQL可以从很多细节入手,比如加索引,但也不是万能的,当SQL达到一定规模,从结构上优化才是根本解决问题的办法,当然前提是改加的索引已经加了,大部分可以从局部优化的细节已经注意到了。

和往常一样,一个新的需求需要从大概10个表中抽取数据,大部分表数据量都在四十万左右,最多的表有100万左右。说真的数据并不算多,但是这么多遍连接后,如果SQL有的有问题查询效率也是非常低的。一开始我按照自己的思路写了一个SQL,只考虑需求和最短时间内实现。

部分SQL如下图,SQL已经超过200行了:

执行结果如下图:

只查询了38行记录,尽然花了将近10s,感觉已经很慢了。

此时我精简SQL的大概结构如下:

 SELECT
*
FROM
(SELECT
*
FROM
A m
INNER JOIN B pm ON pm.id_sour = m.pk_id
LEFT JOIN (SELECT
*
FROM
C
WHERE
is_bring IS NULL OR is_bring = 0
GROUP BY id_m) pd ON m.pk_id = pd.id_m
LEFT JOIN (SELECT
*
FROM
D sd
INNER JOIN E si ON sd.id_ser = si.pk_id
GROUP BY sd.id_m) sd ON m.pk_id = sd.id_m
WHERE
pm.status = ''
AND pm.is_del = 0
AND pm.m_time BETWEEN '2017-05-25 00:00:00' AND '2017-05-25 23:59:59'
AND m.type IN ('') UNION ALL SELECT
*
FROM
F m
INNER JOIN G pm ON pm.id_sour = m.pk_id
LEFT JOIN (SELECT
*
FROM
H
WHERE
is_bring IS NULL OR is_bring = 0
GROUP BY id_m) pd ON m.pk_id = pd.id_m
LEFT JOIN (SELECT
*
FROM
I sd
INNER JOIN E si ON sd.id_ser = si.pk_id
GROUP BY sd.id_m) sd ON m.pk_id = sd.id_m
WHERE
pm.status = ''
AND pm.is_del = 0
AND pm.time BETWEEN '2017-05-25 00:00:00' AND '2017-05-25 23:59:59'
AND m.type IN ('') UNION ALL SELECT
*
FROM
F m
INNER JOIN G pm ON pm.id_sour = m.pk_id
LEFT JOIN (SELECT
*
FROM
H
WHERE
is_bring IS NULL OR is_bring = 0
GROUP BY id_m) pd ON m.pk_id = pd.id_m
LEFT JOIN (SELECT
*
FROM
I sd
INNER JOIN E si ON sd.id_ser = si.pk_id
GROUP BY sd.id_m) sd ON m.pk_id = sd.id_m
WHERE
pm.status = ''
AND pm.is_del = 0
AND pm.time BETWEEN '2017-05-25 00:00:00' AND '2017-05-25 23:59:59'
AND m.type IN ('')) t1
LEFT JOIN
(SELECT
*
FROM
J sb
INNER JOIN (SELECT
m.pk_id AS pk_id, pm.m_time AS m_time
FROM
A m
INNER JOIN B pm ON pm.id_sour = m.pk_id
WHERE
pm.m_time BETWEEN '2017-05-25 00:00:00' AND '2017-05-25 23:59:59'
AND pm.status = '' UNION ALL SELECT
m.from_mid_sn AS pk_id,
pm.m_time AS m_time
FROM
F m
INNER JOIN G pm ON pm.id_sour = m.pk_id
WHERE
pm.time BETWEEN '2017-05-25 00:00:00' AND '2017-05-25 23:59:59'
AND pm.status = '') mp ON mp.pk_id = sb.id_sour
WHERE
sb.c_time <= mp.m_time
GROUP BY sb.id_sour , mp.m_time) t2 ON t1.id_m = CAST(t2.id_sour AS CHAR)
AND t1.m_time_cost = t2.m_time

再精简一下结构如下:

SELECT
*
FROM
(SELECT
*
FROM
A UNION ALL SELECT
*
FROM
B UNION ALL SELECT
*
FROM
C) t1
LEFT JOIN
((SELECT
*
FROM
D)
INNER JOIN (SELECT
*
FROM
E UNION ALL SELECT
*
FROM
F) t2 ON t1.id = t2.id) t3 ON t1.tid = t3.id

其中上面的A、B、C、D、E、F都是10个表中多个表的连接查询的结果。其实以上SQL在我们实现的时候就做过简单的优化了,t3其实可以放进t1中分别和A、B、C连接。但其实A、B、C、已经连接好多表了,在分别连接t3性能会产生更多的数据,效率会更低。

由于是数据抽取,数据只是存储到指定的事实表中。因此对效率没太高的要求,一分钟之内都是可以接受的。本来想这样就算了,还有堆事要干。恰好手里有一段类似逻辑的SQL,但是不完全一样。然后我就跑了一下。发现比我写的快一个数量级,大吃一惊之余我决定探索一下原因。

  精简优化过的SQL代码如下:

SELECT
*
FROM
(SELECT
*
FROM
A m
INNER JOIN (SELECT * FROM B where is_del = 0 AND m_time BETWEEN '2017-05-25 00:00:00' AND '2017-05-25 23:59:59') pm ON pm.id_sour = m.pk_id
WHERE
pm.status = ''
AND pm.is_del = 0
AND pm.m_time BETWEEN '2017-05-25 00:00:00' AND '2017-05-25 23:59:59'
AND m.type IN ('') UNION ALL SELECT
*
FROM
F m
INNER JOIN (SELECT * FROM G where is_del = 0 AND m_time BETWEEN '2017-05-25 00:00:00' AND '2017-05-25 23:59:59') pm ON pm.id_sour = m.pk_id
WHERE
pm.status = ''
AND pm.is_del = 0
AND pm.s_time BETWEEN '2017-05-25 00:00:00' AND '2017-05-25 23:59:59'
AND m.type IN ('') UNION ALL SELECT
*
FROM
F m
INNER JOIN (SELECT * FROM G where is_del = 0 AND m_time BETWEEN '2017-05-25 00:00:00' AND '2017-05-25 23:59:59') pm ON pm.id_sour = m.pk_id
WHERE
pm.status = ''
AND pm.is_del = 0
AND pm.s_time BETWEEN '2017-05-25 00:00:00' AND '2017-05-25 23:59:59'
AND m.type IN ('')) mm
LEFT JOIN
(SELECT
*
FROM
J sb
INNER JOIN (SELECT
m.pk_id AS pk_id, pm.m_time AS m_time
FROM
A m
INNER JOIN B pm ON pm.id_sour = m.pk_id
WHERE
pm.status = ''
AND pm.is_del = 0
AND m.type IN ('')
AND m.is_del = 0
AND m.is_mig = 0
AND pm.m_time BETWEEN '2017-05-25 00:00:00' AND '2017-05-25 23:59:59' UNION ALL SELECT
m.from_mid_sn AS pk_id,
pm.m_time AS m_time
FROM
F m
INNER JOIN (SELECT * FROM G where is_del = 0 AND m_time BETWEEN '2017-05-25 00:00:00' AND '2017-05-25 23:59:59') pm ON pm.id_sour = m.pk_id
WHERE
pm.status = ''
AND pm.is_del = 0
AND m.type IN ('')
AND m.is_del = 0
AND m.is_mig = 0
AND pm.s_time BETWEEN '2017-05-25 00:00:00' AND '2017-05-25 23:59:59') mp ON mp.pk_id = sb.id_sour
WHERE
sb.c_time <= mp.m_time
GROUP BY sb.id_sour , mp.m_time) cost ON cost.id_sour = mm.id_m
AND cost.m_time = mm.m_time_cost
LEFT JOIN
(SELECT
*
FROM
D sd
INNER JOIN E si ON sd.id_ser = si.pk_id
INNER JOIN (SELECT DISTINCT
*
FROM
A m
INNER JOIN B pm ON pm.id_sour = m.pk_id
WHERE
pm.status = ''
AND pm.is_del = 0
AND m.type IN ('')
AND m.is_del = 0
AND m.is_mig = 0
AND pm.m_time BETWEEN '2017-05-25 00:00:00' AND '2017-05-25 23:59:59') ms ON sd.id_m = ms.pk_id
GROUP BY sd.id_m UNION ALL SELECT
*
FROM
I sd
INNER JOIN E si ON sd.id_ser = si.pk_id
INNER JOIN (SELECT DISTINCT
m.pk_id, from_mid_sn, pm.m_time
FROM
F m
INNER JOIN G pm ON pm.id_sour = m.pk_id
WHERE
pm.status = ''
AND pm.is_del = 0
AND m.type IN ('')
AND m.is_del = 0
AND m.is_mig = 0
AND pm.s_time BETWEEN '2017-05-25 00:00:00' AND '2017-05-25 23:59:59') ms ON sd.id_m = ms.pk_id
GROUP BY sd.id_m) ser ON ser.id_m = mm.id_m
AND ser.m_time = mm.m_time_cost
LEFT JOIN
(SELECT
*
FROM
C pd
INNER JOIN (SELECT DISTINCT
m.pk_id, pm.m_time
FROM
A m
INNER JOIN B pm ON pm.id_sour = m.pk_id
WHERE
pm.status = ''
AND pm.is_del = 0
AND m.type IN ('')
AND m.is_del = 0
AND m.is_mig = 0
AND pm.m_time BETWEEN '2017-05-25 00:00:00' AND '2017-05-25 23:59:59') ms ON ms.pk_id = pd.id_m
WHERE
is_bring IS NULL OR is_bring = 0
GROUP BY pd.id_m , ms.m_time UNION ALL SELECT
*
FROM
H pd
INNER JOIN (SELECT DISTINCT
m.pk_id, pm.m_time, from_mid_sn
FROM
F m
INNER JOIN G pm ON pm.id_sour = m.pk_id
WHERE
pm.status = ''
AND pm.is_del = 0
AND m.type IN ('')
AND m.is_del = 0
AND m.is_mig = 0
AND pm.s_time BETWEEN '2017-05-25 00:00:00' AND '2017-05-25 23:59:59') ms ON ms.pk_id = pd.id_m
WHERE
is_bring IS NULL OR is_bring = 0
GROUP BY pd.id_m) part ON part.id_m = mm.id_m
AND part.m_time = mm.m_time_cost

运行此代码结果如下:

同样的结果,效率整整提升了一个数量级,哇咔咔。。。其实写出之前让我参考的效率较高的SQL的一位妹子。在我公司,大家称之为SQL女神,果然名不虚传。佩服之余我要要要学习一下。

仔细分析以上优化过的SQL,其实是巧妙的使用了某种规律,我称之为---SQL分配率和结合律。

最左侧的子SQL(或者临时表:mm)如下:

SELECT
*
FROM
A m
INNER JOIN (SELECT * FROM B where is_del = 0 AND m_time BETWEEN '2017-05-25 00:00:00' AND '2017-05-25 23:59:59') pm ON pm.id_sour = m.pk_id
WHERE
pm.status = ''
AND pm.is_del = 0
AND pm.m_time BETWEEN '2017-05-25 00:00:00' AND '2017-05-25 23:59:59'
AND m.type IN ('') UNION ALL SELECT
*
FROM
F m
INNER JOIN (SELECT * FROM G where is_del = 0 AND m_time BETWEEN '2017-05-25 00:00:00' AND '2017-05-25 23:59:59') pm ON pm.id_sour = m.pk_id
WHERE
pm.status = ''
AND pm.is_del = 0
AND pm.s_time BETWEEN '2017-05-25 00:00:00' AND '2017-05-25 23:59:59'
AND m.type IN ('') UNION ALL SELECT
*
FROM
F m
INNER JOIN (SELECT * FROM G where is_del = 0 AND m_time BETWEEN '2017-05-25 00:00:00' AND '2017-05-25 23:59:59') pm ON pm.id_sour = m.pk_id
WHERE
pm.status = ''
AND pm.is_del = 0
AND pm.s_time BETWEEN '2017-05-25 00:00:00' AND '2017-05-25 23:59:59'
AND m.type IN ('')

其实38条数据的结果,在以上子SQL就已经确定了,因此后面的LEFT JOIN或INNER JOIN,JOIN的数据都会比较少,效率自然高。相对于优化前的写法,以上子SQL各自还连接了一堆相同的表。现在把这堆相同的表提到最外面做一次连接。这里体现的是SQL结合律。

转载请注明出处

总结:当SQL规模比较庞大时,良好的SQL结构能大大提升执行的效率。并且SQL的优化也不是一蹴而就,也是一个循序渐进不断尝试的过程。以上SQL不一定就是最优,此处并没有谈SQL语法最佳使用细节。具体可参考以下链接。

https://dev.mysql.com/doc/refman/5.7/en/optimization.html

MySQL查询优化之性能提升一个数量级的更多相关文章

  1. 如何把 MySQL 备份验证性能提升 10 倍

    JuiceFS 非常适合用来做 MySQL 物理备份,具体使用参考我们的官方文档.最近有个客户在测试时反馈,备份验证的数据准备(xtrabackup --prepare)过程非常慢.我们借助 Juic ...

  2. MySQL 8.0 —— CATS事务调度算法的性能提升

    原文地址:https://mysqlserverteam.com/contention-aware-transaction-scheduling-arriving-in-innodb-to-boost ...

  3. oracle 11g亿级复杂SQL优化一例(数量级性能提升)

    自从16年之后,因为工作原因,项目中就没有再使用oracle了,最近最近支持一个项目,又要开始负责这块事情了.最近在跑性能测试,配置全部调好之后,不少sql还存在性能低下的问题,主要涉及执行计划的不合 ...

  4. huge page 能给MySQL 带来性能提升吗?

    最近一直在做性能压测相关的事情,有公众号的读者朋友咨询有赞的数据库服务器有没有开启huge page,我听说过huge page会对性能有所提升,本文就一探究竟.对过程没有兴趣的可以直接看结论. 二 ...

  5. 用一个性能提升了666倍的小案例说明在TiDB中正确使用索引的重要性

    背景 最近在给一个物流系统做TiDB POC测试,这个系统是基于MySQL开发的,本次投入测试的业务数据大概10个库约900张表,最大单表6千多万行. 这个规模不算大,测试数据以及库表结构是用Dump ...

  6. 在MongoDB中创建一个索引而性能提升1000倍的小例子

    在https://www.cnblogs.com/xuliuzai/p/9965229.html的博文中我们介绍了MongoDB的常见索引的创建语法.部分同学还想看看MongoDB的威力到底有多大,所 ...

  7. 如何提升mysql replication的性能&amp;多线程传输二进制日志

    1,最好使用内网或者专线链路传输binlog数据 (千兆网卡.还不够的话,bounding 技术,扩展带宽) 在my.cnf中强制使用内网ip传输数据bind-address=ip2,将二进制保存在独 ...

  8. 查询性能提升3倍!Apache Hudi 查询优化了解下?

    从 Hudi 0.10.0版本开始,我们很高兴推出在数据库领域中称为 Z-Order 和 Hilbert 空间填充曲线的高级数据布局优化技术的支持. 1. 背景 Amazon EMR 团队最近发表了一 ...

  9. mysql查询优化之二:查询优化器的局限性

    在<mysql查询优化之一:mysql查询优化常用方式>一文中列出了一些优化器常用的优化手段.查询优化器在提供这些特性的同时,也存在一定的局限性,这些局限性往往会随着MySQL版本的升级而 ...

随机推荐

  1. Hadoop 之日志管理—应用在 YARN 中运行时的日志

    背景: 在写这篇博文前,自己一直没有弄明白一个问题,“在 Map 函数和 Reduce 函数中使用 System.out.print 打印日志时,输出内容在哪里显示?”.试了好多回,在 log/* 目 ...

  2. [LeetCode] 286. Walls and Gates_Medium tag: BFS

    You are given a m x n 2D grid initialized with these three possible values. -1 - A wall or an obstac ...

  3. 最新可靠好用的DNS服务器地址汇总

    如果修改DNS服务器地址就可以访问google等服务,你还等什么?使用免费DNS解析服务除了去掉了运营商的各种广告,还有个最大的好处就是不会重定向或者过滤用户所访问的地址,这样就防止了很多网站被电信. ...

  4. testNG入门详解

    TestNG 的注释: @DataProvider @ExpectedExceptions @Factory @Test @Parameters <suite name="Parame ...

  5. Base64编码加密

    package liferay; public class Base64 { public static final char EQUAL = '='; public static final cha ...

  6. 服务器修改用户密码注意iis部署的网站问题

    当服务器修改用户密码时,需要修改iis上部署的跟此用户权限有关的所有网站,选择网站——右击——应用程序管理——高级设置——物理路径凭证——特定用户——修改用户名和密码.

  7. arcgis中加载google在线地图

    打开arcmap——文件——arcgis online ——搜索china maps 选择china

  8. 20155308 2016-2017-2 《Java程序设计》第9周学习总结

    20155308 2016-2017-2 <Java程序设计>第9周学习总结 教材学习内容总结 第十六章 整合数据库 16.1 JDBC入门 驱动的四种类型 JDBC-ODBC Bridg ...

  9. python webdriver操作浏览器句柄

    断言 assert self.driver.title.find(u"搜狗搜索引擎")>=0, "assert error" 浏览器后退,前进,前进前要先 ...

  10. 2018-2019-2 20165209 《网络对抗技术》Exp6:信息搜集与漏洞扫描

    2018-2019-2 20165209 <网络对抗技术>Exp6:信息搜集与漏洞扫描 1 基础问题回答和实验内容 1.1基础问题回答 (1)哪些组织负责DNS,IP的管理. Intern ...