ZS and The Birthday Paradox
ZS and The Birthday Paradox
题目链接:http://codeforces.com/contest/711/problem/E
数学题(Legendre's formula)
这题是以生日悖论(如果有23个或23个以上的人,那么至少有两个人的生日相同的概率要大于50%)为背景的数学题。公式本身不难推,主要是对大数的处理。
首先,我们需要找到分子和分母的公因数,这里用到了Legendre's formula(举个例子:10!的因数中质数3的个数为[10/3+10/(3^2)])。因为若2^n-x与2^n有公因数,那么x与2^n有相同的公因数,所以求(2^n)(2^n-1)(2^n-2)*...*(2^n-k+1)与(2^n)^k的公因数,就转化为了求(k-1)!与(2^n)^k的公因数。
之后就是分别求分子和分母:
对于分母来说,只需要用快速幂(也可以用费马小定理)就可以很容易的求出,再乘上公因数的逆元即可;
而对于分子来说,稍微有点麻烦:
1.如果k>=M,即(2^n)(2^n-1)(2^n-2)*...*(2^n-k+1)中至少有连续的M个整数,
那么(2^n)(2^n-1)(2^n-2)*...*(2^n-k+1)一定为M的倍数,所以它被M求模后余0;
2.如果k<M,因为M很小,所以枚举一下,就可以求出分子,再乘上公因数的逆元即可。
总的时间复杂度为O(M+lgk+lgn)
(感谢游少半夜教我证明Orz)
证明:(A/B)modM=(A*(BmodM)')modM,其中B'为B在M下的逆元
令B=b1*b2*b3*...*bn,则((BmodM)')modM
=((b1*b2*b3*...*bn mod M)')modM
=(b1modM*b2modM*...*bn mod M)'modM
=(b1*b2*...*bn)modM*(b1modM*b2modM*...*bn mod M)'modM*(b1*b2*...*bn)'modM
=(b1modM*b2modM*...*bn mod M)*(b1modM*b2modM*...*bn mod M)'modM*(b1*b2*...*bn)'modM
=1*(b1*b2*...*bn)'modM=(b1*b2*...*bn)'modM
=b1*b1'modM*b2*b2'modM...bn*bn'mod M*(b1*b2*...*bn)'modM
=(b1*b2*...*bn)modM*(b1'modM*b2'modM...bn'mod M)*(b1*b2*...*bn)'modM
=b1'modM*b2'modM...bn'mod M
代码如下:
#include<cstdio>
#include<iostream>
#define M (long long)(1e6+3)
using namespace std;
typedef long long LL;
LL n,k,cnt,molecular,numerator,x,y;
LL exGCD(LL a,LL b){
if(b==){
x=,y=;
return a;
}
LL r=exGCD(b,a%b);
LL temp=x;
x=y;
y=temp-(a/b)*y;
return r;
}
LL mod(LL a,LL b){
LL base=a,temp=;
while(b){
if(b&)temp=(temp*base)%M;
base=(base*base)%M;
b>>=;
}
return temp;
}
int main(void){
cin>>n>>k;
if(n<=&&k>(((LL))<<n)){//总人数大于总天数
cout<<""<<" "<<""<<endl;
return ;
}
LL temp=;
while(k->=temp){//根据Legendre's formula,求出(k-1)!的因数中质数2的个数
cnt+=((k-)/temp);
temp<<=;
}
if(cnt){//若有公因数,则求出公因数的逆元
LL gcd=mod(,cnt);
exGCD(gcd,M);
x=(x+M)%M;
}else x=;//若没有公因数,则令x=1,来消除对后面计算的影响
temp=mod(,n);//计算2^n
numerator=(mod(temp,k-)*x)%M;//计算(2^n)^(k-1)
if(k>=M)molecular=;//若分子出现连续的M个整数,则分子一定为M的倍数
else{
molecular=;
for(LL i=;i<k;++i){
molecular=((temp-i+M)%M*molecular)%M;//计算分子
}
molecular=(molecular*x)%M;//除以公因数
}
molecular=(numerator-molecular+M)%M;
cout<<molecular<<" "<<numerator<<endl;
}
ZS and The Birthday Paradox的更多相关文章
- codeforces 711E E. ZS and The Birthday Paradox(数学+概率)
题目链接: E. ZS and The Birthday Paradox. time limit per test 2 seconds memory limit per test 256 megaby ...
- Codeforces 711E ZS and The Birthday Paradox 数学
ZS and The Birthday Paradox 感觉里面有好多技巧.. #include<bits/stdc++.h> #define LL long long #define f ...
- Codeforces Round #369 (Div. 2) E. ZS and The Birthday Paradox 数学
E. ZS and The Birthday Paradox 题目连接: http://www.codeforces.com/contest/711/problem/E Description ZS ...
- 【Codeforces711E】ZS and The Birthday Paradox [数论]
ZS and The Birthday Paradox Time Limit: 20 Sec Memory Limit: 512 MB Description Input Output Sample ...
- CF369E. ZS and The Birthday Paradox
/* cf369E. ZS and The Birthday Paradox http://codeforces.com/contest/711/problem/E 抽屉原理+快速幂+逆元+勒让德定理 ...
- Codeforces 711E ZS and The Birthday Paradox
传送门 time limit per test 2 seconds memory limit per test 256 megabytes input standard input output st ...
- cf711E ZS and The Birthday Paradox
ZS the Coder has recently found an interesting concept called the Birthday Paradox. It states that g ...
- 【28.57%】【codeforces 711E】ZS and The Birthday Paradox
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- codeforces 711E. ZS and The Birthday Paradox 概率
已知一年365天找23个人有2个人在同一天生日的概率 > 50% 给出n,k ,表示现在一年有2^n天,找k个人,有2个人在同一天生日的概率,求出来的概率是a/b形式,化到最简形式,由于a,b可 ...
随机推荐
- C语言之数组
数组 数组就是在内存空间中,开辟一个大的空间,然后再将这个大的空间均的分为若干份的小空间,每个小空间用来保存一个数据. 1). 数组的专业术语: 长度:指的能存放数据的个数 下标/索引:每一个数据所在 ...
- Server Tomcat v6.0 at localhost was unable to start within 45 seconds
在eclipse里启动tomcat的时候出现以下的错误: Server Tomcat v6.0 at localhost was unable to start within 45 seconds. ...
- BootStrap的菜单的快速创建
在bootstrap的3.0版本及以上时,菜单的创建有所改变. 现在,我们只需记住3个类 dropdown open dropdown-menu. 前两个是为ul 列表的父元素用的,最后一个是给ul ...
- HTTP could not register URL http://+:86/. 设置VS默认以管理员权限打开
在使用visual studio 2013启动self host webapi时候碰到下面的错误: 详细错误信息如下: HTTP could not register URL http://+:8 ...
- jquery中这句 .stop(false,true); 什么意思
.stop 是jQuery中用于控制页面动画效果的方法.运行之后立刻结束当前页面上的动画效果.stop在新版jQuery中添加了2个参数:第一个参数的意思是是否清空动画序列,也就是stop的是当前元素 ...
- http缓存与cdn相关技术
阅读目录 一 http缓存 二.Http缓存概念解析 三.cdn相关技术 摘要:最近要做这个主题的组内分享,所以准备了一个星期,查了比较多的资料.准备的过程虽然很烦很耗时间,不过因为需要查很多的资料, ...
- c#:readonly与const的区别
readonly与const的区别: 1.初始化:const 字段只能在该字段的声明中初始化. readonly 字段可以在声明或构造函数中初始化. 2.值: const 字段是编译时常量(con ...
- ibatis动态修改select出来的字段
今天自己做了一个测试 , 动态去select出来数据库的字段, 但是我传参数都是正确的 , 可就是无法出来结果, 返回对象NULL . 表示很郁闷 , 然后就google了一下 , 关键词 : iba ...
- hibernate子查询
对于支持子查询的数据库,Hibernate支持在查询中使用子查询.一个子查询必须被圆括号包围起来(经常是SQL聚集函数的圆括号). 甚至相互关联的子查询(引用到外部查询中的别名的子查询)也是允许的. ...
- 微信小程序使用场景及取名“潜”规则
微信小程序使用场景举例: 1.查看公交 2.登记.选座 3.订票 4.K歌.叫代驾 5.快递查询 6.查看天气 7.医院挂号.拿药.缴费 8.加油充电 9.政务服务 微信公众号“数据三观”认为,小程序 ...