强联通块tarjan算法
http://poj.org/problem?id=1236
第一问:需要几个学校存在软件,才能通过传递,使得所有的学校都有软件
用tarjan算法求出强联通分量后,将每个联通分量缩成一个点,那么问题1的答案就是入度为0的点的个数
为什么?入度为0的点,肯定不能通过其他学校传送软件给他,所以他必须存在一份软件
第二问:需要加几条边,才能使得图强联通
缩点后,a为所有入度为0的点的个数,b为所有出度为0的点的个数,那么答案就是max(a,b)
#include <stdio.h>
#include <string.h>
#include <vector>
#include <stack>
using namespace std;
const int N = + ;
vector<int> G[N];
stack<int> st;
bool vis[N];
int sccno[N],pre[N],lowlink[N],in[N],out[N],dfs_clock,scc_cnt;
int min(const int &a, const int &b)
{
return a < b ? a : b;
}
void tarjan(int u)
{
pre[u] = lowlink[u] = ++dfs_clock;
st.push(u);
for(int i=; i<G[u].size(); ++i)
{
int v = G[u][i];
if(!pre[v])
{
tarjan(v);
lowlink[u] = min(lowlink[u],lowlink[v]);
}
else if(!sccno[v])
lowlink[u] = min(lowlink[u],pre[v]);
}
if(lowlink[u]==pre[u])
{
scc_cnt++;
for(;;)
{
int x = st.top();st.pop();
sccno[x] = scc_cnt;
if(x==u) break;
}
}
}
void find_scc(int n)
{
for(int i=; i<=n; ++i)
if(!pre[i])
tarjan(i);
}
int main()
{
int n,i,a,b;
scanf("%d",&n);
for(a=; a<=n; ++a)
{
while(scanf("%d",&b),b)
{
G[a].push_back(b);
vis[b] = true;
}
}
find_scc(n);
for(i=; i<=scc_cnt; ++i) in[i] = out[i] = ;
for(int u=; u<=n; ++u)
for(i=; i<G[u].size();++i)
{
int v = G[u][i];
if(sccno[u] != sccno[v]) in[sccno[v]] = out[sccno[u]] = ;
}
a = b = ;
for(i=; i<=scc_cnt; ++i)
{
if(in[i]) a++;
if(out[i]) b++;
}
int ans = a > b ? a : b;
if(scc_cnt == ) ans = ;
printf("%d\n%d\n",a,ans);
return ;
}
强联通块tarjan算法的更多相关文章
- 强联通分量-tarjan算法
定义:在一张有向图中,两个点可以相互到达,则称这两个点强连通:一张有向图上任意两个点可以相互到达,则称这张图为强连通图:非强连通图有极大的强连通子图,成为强联通分量. 如图,{1},{6}分别是一个强 ...
- 有向图的强联通分量 Tarjan算法模板
//白书 321页 #include<iostream> #include<cstdio> #include<cstring> #include<vector ...
- hdu2767 Proving Equivalences,有向图强联通,Kosaraju算法
点击打开链接 有向图强联通,Kosaraju算法 缩点后分别入度和出度为0的点的个数 answer = max(a, b); scc_cnt = 1; answer = 0 #include<c ...
- [vios1023]维多利亚的舞会3<强联通分量tarjan>
题目链接:https://vijos.org/p/1023 最近在练强联通分量,当然学的是tarjan算法 而这一道题虽然打着难度为3,且是tarjan算法的裸题出没在vijos里面 但其实并不是纯粹 ...
- POJ 2186-Popular Cows (图论-强联通分量Korasaju算法)
题目链接:http://poj.org/problem?id=2186 题目大意:有n头牛和m对关系, 每一对关系有两个数(a, b)代表a牛认为b牛是“受欢迎”的,且这种关系具有传递性, 如果a牛认 ...
- POJ 3592 Instantaneous Transference(强联通分量 Tarjan)
http://poj.org/problem?id=3592 题意 :给你一个n*m的矩阵,每个位置上都有一个字符,如果是数字代表这个地方有该数量的金矿,如果是*代表这个地方有传送带并且没有金矿,可以 ...
- poj-3177(并查集+双联通分量+Tarjan算法)
题目链接:传送门 思路: 题目要将使每一对草场之间都有至少两条相互分离的路径,所以转化为(一个有桥的连通图至少加几条边才能变为双联通图?) 先求出所有的桥的个数,同时将不同区块收缩成一个点(利用并查集 ...
- 双联通的tarjan算法
转自:https://www.zhihu.com/question/40746887/answer/88428236 连通分量有三种∶边双连通分量,点双连通分量,强连通分量,前两种属于无向图,后一种属 ...
- POJ 3114 Countries in War(强联通分量+Tarjan)
题目链接 题意 : 给你两个城市让你求最短距离,如果两个城市位于同一强连通分量中那距离为0. 思路 :强连通分量缩点之后,求最短路.以前写过,总感觉记忆不深,这次自己敲完再写了一遍. #include ...
随机推荐
- 使用Iterator遍历Sheet(POI)验证及解释结果有序性
test.xlsx: Code: package poi; import static org.junit.Assert.*; import java.io.IOException; import j ...
- C++ Map 容器
1.Map是c++的一个标准容器,它提供了很好一对一的关系. Map是一种关联是容器,在map中增加和删除元素非常容易.可以修改一个特定的节点而不对其他节点不产生影响,由于map是一种关联式容器,Ke ...
- php 和thinkphp 对excel操作
php对excel的操作主要通过引入 excel_reader2.php 或者是PHPExcel 类进行 两个文件自行下载 php 对其读操作: 文件目录结构 excel_reader2.php ...
- Swift - 使用arc4random()、arc4random_uniform()取得随机数
arc4random()这个全局函数会生成9位数的随机整数 1,下面是使用arc4random函数求一个1~100的随机数(包括1和100) 1 var temp:Int = Int(arc4ra ...
- wiki 3143 二叉树的前序、中序及后序遍历
先序遍历:訪问根.遍历左子树.遍历右子树,简称:DLR. 中序遍历:遍历左子树,訪问根,遍历右子树,简称:LDR. 后序遍历:遍历左子树,遍历右子树.訪问根.简称:LRD. 数组搞的: #pragma ...
- 与众不同 windows phone (20) - Device(设备)之位置服务(GPS 定位), FM 收音机, 麦克风, 震动器
原文:与众不同 windows phone (20) - Device(设备)之位置服务(GPS 定位), FM 收音机, 麦克风, 震动器 [索引页][源码下载] 与众不同 windows phon ...
- WinDBG调试技巧
参考链接:http://wenku.baidu.com/view/4e58744dcf84b9d528ea7a42.html
- jQuery EasyUI API 中文文档 - 菜单按钮(menubutton)
<html> <head> <script src="jquery-easyui/jquery.min.js"></script> ...
- Static关键字的作用及使用
1.使用static声明属性 如果希望一个属性被所有对象共同拥有,可以将其声明为static类型. 声明为static类型的属性或方法,此属性或方法也被称为类方法,可以由类名直接调用. class P ...
- 【android】禁止Edittext弹出软键盘而且使光标正常显示
/** * 禁止Edittext弹出软件盘,光标依旧正常显示. */ public void disableShowSoftInput() { if (android.os.Build.VERSION ...