HDU4869:Turn the pokers(费马小定理+高速幂)
times, and each time she can flip Xi pokers. She wanted to know how many the results does she get. Can you help her solve this problem?
Each test case begins with a line containing two non-negative integers n and m(0<n,m<=100000).
The next line contains n integers Xi(0<=Xi<=m).
3 4
3 2 3
3 3
3 2 3
8
3HintFor the second example:
0 express face down,1 express face up
Initial state 000
The first result:000->111->001->110
The second result:000->111->100->011
The third result:000->111->010->101
So, there are three kinds of results(110,011,101)
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define mod 1000000009
#define LL __int64
#define maxn 100000+5 LL f[maxn]; void set()
{
int i;
f[0] = 1;
for(i = 1; i<maxn; i++)
f[i] = (f[i-1]*i)%mod;
} LL quickmod(LL a,LL b)
{
LL ans = 1;
while(b)
{
if(b&1)
{
ans = (ans*a)%mod;
b--;
}
b/=2;
a = ((a%mod)*(a%mod))%mod;
}
return ans;
} int main()
{
int n,m,i,j,k,l,r,x,ll,rr;
set();
while(~scanf("%d%d",&n,&m))
{
l = r = 0;
for(i = 0; i<n; i++)
{
scanf("%d",&x);
//计算最小的1的个数,尽可能多的让1->0
if(l>=x) ll = l-x;//当最小的1个数大于x。把x个1所有翻转
else if(r>=x) ll = ((l%2)==(x%2))?0:1;//当l<x<=r,因为不管怎么翻。其奇偶性必然相等,所以看l的奇偶性与x是否同样,同样那么知道最小必然变为0,否则变为1
else ll = x-r;//当x>r,那么在把1所有变为0的同一时候,还有x-r个0变为1
//计算最大的1的个数,尽可能多的让0->1
if(r+x<=m) rr = r+x;//当r+x<=m的情况下。所有变为1
else if(l+x<=m) rr = (((l+x)%2) == (m%2)?m:m-1);//在r+x>m可是l+x<=m的情况下,也是推断奇偶。同态那么必然在中间有一种能所有变为1,否则至少有一张必然为0
else rr = 2*m-(l+x);//在l+x>m的情况下。等于我首先把m个1变为了0,那么我还要翻(l+x-m)张。所以终于得到m-(l+x-m)个1 l = ll,r = rr;
}
LL sum = 0;
for(i = l; i<=r; i+=2)//使用费马小定理和高速幂的方法求和
sum+=((f[m]%mod)*(quickmod((f[i]*f[m-i])%mod,mod-2)%mod))%mod;
printf("%I64d\n",sum%mod);
} return 0;
}
HDU4869:Turn the pokers(费马小定理+高速幂)的更多相关文章
- 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)
题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...
- hdu_4869(费马小定理+快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4869 Turn the pokers Time Limit: 2000/1000 MS (Java/O ...
- 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum
Sum Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...
- BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...
- hdu4549(费马小定理 + 快速幂)
M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = a F[1] = b F[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n ...
- HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)
题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description Sample Input 2 Sample Outp ...
- hdu1576-A/B-(同余定理+乘法逆元+费马小定理+快速幂)
A/B Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- 牛客训练四:Applese 涂颜色(费马小定理+快速幂)
题目链接:传送门 思路: 考虑每一列有2种颜色,总共有n行,每一行的第一个格确定颜色,由于左右颜色不相同,后面的行就确定了. 所以总共有2^n中结果. 由于n太大,所以要用到费马小定理a^n%mod= ...
- 【费马小定理+快速幂取模】ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies
G. Give Candies There are N children in kindergarten. Miss Li bought them N candies. To make the pro ...
随机推荐
- 网页制作之html基础学习2-标签
一.html结构组成 <html> --开始标签 <head> 网页上的控制信息 <title>页面标题</title> </head> & ...
- JSP两个动作(include,forward)
include动作 <div id="container"> <jsp:include page="HelloWorld.jsp" flush ...
- Server是如何完成针对请求的监听、接收与响应1
Server是如何完成针对请求的监听.接收与响应的[上] Server是ASP .NET Core管道的第一个节点,负责完整请求的监听和接收,最终对请求的响应同样也由它完成.Server是我们对所有实 ...
- c 中关于int,unsigned int , short 各种类型总结
int类型比较特殊,具体的字节数同机器字长和编译器有关.如果要保证移植性,尽量用__int16 __int32 __int64吧__int16.__int32这种数据类型在所有平台下都分配相同的字节. ...
- Android_简单笔记一
入门学习Android的简单笔记(已经安装好了开发环境ADT) 一.关于 AndroidManifest.xml文件 1. android:icon和android:label定义了应用程序安装后显示 ...
- linux下编译.so 和.a 可能出现的问题 ?
1. 静态函数库 这类库的名字一般是libxxx.a:利用静态函数库编译成的文件比较大,因为整个 函数库的所有数据都会被整合进目标代码中,他的优点就显而易见了,即编译后的执行程序不需要外部的函数库支持 ...
- Eclipse用法和技巧二十:一个快速打印技巧
调试的时候经常用到打印语句,当需要添加的说明字符串和需要打印的数值混淆到一起的时候,需要先写字符串如,"the string here is",接着再输入变量的值.这样一来一去还是 ...
- 基于visual Studio2013解决面试题之0909移动星号
题目
- C# 未能加载文件或程序集“MySQLDriverCS..." 错误解决
在解决方案的属性里,生成,里面有个目标平台,网上说的 大概也就是64位和32位的不兼容问题..试着把目标平台改为X86后竟然神奇的正常了!
- Appium - iOS 各种问题汇总
Appium - iOS 各种问题汇总 作者: Max.Bai 时间: 2014/10 Appium - iOS 各种问题汇总 1. Appium 滑动: swipe 有三种方式: 第一种:swi ...