Problem Description
During summer vacation,Alice stay at home for a long time, with nothing to do. She went out and bought m pokers, tending to play poker. But she hated the traditional gameplay. She wants to change. She puts these pokers face down, she decided to flip poker n
times, and each time she can flip Xi pokers. She wanted to know how many the results does she get. Can you help her solve this problem?
 
Input
The input consists of multiple test cases. 

Each test case begins with a line containing two non-negative integers n and m(0<n,m<=100000). 

The next line contains n integers Xi(0<=Xi<=m).
 
Output
Output the required answer modulo 1000000009 for each test case, one per line.
 
Sample Input
3 4
3 2 3
3 3
3 2 3
 
Sample Output
8
3
Hint
For the second example:
0 express face down,1 express face up
Initial state 000
The first result:000->111->001->110
The second result:000->111->100->011
The third result:000->111->010->101
So, there are three kinds of results(110,011,101)
 


题意:对于m张牌给出n个操作,每次操作选择a[i]张牌进行翻转。问终于得到几个不同的状态
思路:在n张牌选k张。非常easy想到组合数,可是关键是怎么进行组合数计算呢?我们能够发现,在牌数固定的情况下。总共进行了sum次操作的话,事实上有非常多牌是经过了多次翻转,而每次翻转仅仅有0和1两种状态,那么,奇偶性就出来了。也就是说,不管怎么进行翻牌,终于态不管有几个1,这些1的总数的奇偶性是固定的。
那么我们如今仅仅须要找到最大的1的个数和最小的1的个数。然后再这个区间内进行组合数的求解就可以
可是又有一个问题出来了,数据非常大,进行除法是一个不明智的选择。可是组合数公式必然有除法
C(n,m) = n!/(m!*(n-m)!)
可是我们知道费马小定理a^(p-1)=1%p
那么a^(p-1)/a = 1/a%p 得到 a^(p-2) = 1/a%p
发现了吧?这样就把一个整数变成了一个分母!
于是便得到sum+=((f[m]%mod)*(quickmod((f[i]*f[m-i])%mod,mod-2)%mod))%mod
用高速幂去撸吧!

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define mod 1000000009
#define LL __int64
#define maxn 100000+5 LL f[maxn]; void set()
{
int i;
f[0] = 1;
for(i = 1; i<maxn; i++)
f[i] = (f[i-1]*i)%mod;
} LL quickmod(LL a,LL b)
{
LL ans = 1;
while(b)
{
if(b&1)
{
ans = (ans*a)%mod;
b--;
}
b/=2;
a = ((a%mod)*(a%mod))%mod;
}
return ans;
} int main()
{
int n,m,i,j,k,l,r,x,ll,rr;
set();
while(~scanf("%d%d",&n,&m))
{
l = r = 0;
for(i = 0; i<n; i++)
{
scanf("%d",&x);
//计算最小的1的个数,尽可能多的让1->0
if(l>=x) ll = l-x;//当最小的1个数大于x。把x个1所有翻转
else if(r>=x) ll = ((l%2)==(x%2))?0:1;//当l<x<=r,因为不管怎么翻。其奇偶性必然相等,所以看l的奇偶性与x是否同样,同样那么知道最小必然变为0,否则变为1
else ll = x-r;//当x>r,那么在把1所有变为0的同一时候,还有x-r个0变为1
//计算最大的1的个数,尽可能多的让0->1
if(r+x<=m) rr = r+x;//当r+x<=m的情况下。所有变为1
else if(l+x<=m) rr = (((l+x)%2) == (m%2)?m:m-1);//在r+x>m可是l+x<=m的情况下,也是推断奇偶。同态那么必然在中间有一种能所有变为1,否则至少有一张必然为0
else rr = 2*m-(l+x);//在l+x>m的情况下。等于我首先把m个1变为了0,那么我还要翻(l+x-m)张。所以终于得到m-(l+x-m)个1 l = ll,r = rr;
}
LL sum = 0;
for(i = l; i<=r; i+=2)//使用费马小定理和高速幂的方法求和
sum+=((f[m]%mod)*(quickmod((f[i]*f[m-i])%mod,mod-2)%mod))%mod;
printf("%I64d\n",sum%mod);
} return 0;
}

HDU4869:Turn the pokers(费马小定理+高速幂)的更多相关文章

  1. 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

    题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...

  2. hdu_4869(费马小定理+快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4869 Turn the pokers Time Limit: 2000/1000 MS (Java/O ...

  3. 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum

    Sum Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...

  4. BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...

  5. hdu4549(费马小定理 + 快速幂)

    M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = a F[1] = b F[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n ...

  6. HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description   Sample Input 2 Sample Outp ...

  7. hdu1576-A/B-(同余定理+乘法逆元+费马小定理+快速幂)

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  8. 牛客训练四:Applese 涂颜色(费马小定理+快速幂)

    题目链接:传送门 思路: 考虑每一列有2种颜色,总共有n行,每一行的第一个格确定颜色,由于左右颜色不相同,后面的行就确定了. 所以总共有2^n中结果. 由于n太大,所以要用到费马小定理a^n%mod= ...

  9. 【费马小定理+快速幂取模】ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies

    G. Give Candies There are N children in kindergarten. Miss Li bought them N candies. To make the pro ...

随机推荐

  1. Qt 智能指针学习(7种QT智能指针和4种std智能指针)

    从内存泄露开始? 很简单的入门程序,应该比较熟悉吧 ^_^ #include <QApplication> #include <QLabel> int main(int arg ...

  2. 《C语言深度解剖》面试题整理

    请在40分钟内完成以下20道C语言基础题.在没有任何提示的情况下,如果能得满分,那么你可以扔掉本书了,你的水平已经大大超过了作者:如果能的80分以上,说明你的C语言基础还不错,学习本书可能会比较轻松: ...

  3. Android开发10.1:UI组件适配器AdapterView(创建ListView,Adapter接口)

    @version:Android4.3 API18 @author:liuxinming 概述               AdapterView继承了ViewGroup,它的本质是容器       ...

  4. [置顶] Guava学习之Iterators

    Iterators类提供了返回Iterator类型的对象或者对Iterator类型对象操作的方法.除了特别的说明,Iterators类中所有的方法都在Iterables类中有相应的基于Iterable ...

  5. 一个带动画效果的颜色选择对话框控件AnimatedColorPickerDialog

    android4.4的日历中选择日程显示颜色的时候有一个颜色选择对话框非常漂亮,模仿他的界面我实现了一个类似的对话框,而且带有动画效果. 代码的实现可讲的地方不多,主要是采用了和AlertDialog ...

  6. Perl 面向对象编程的两种实现和比较:

    <pre name="code" class="html">https://www.ibm.com/developerworks/cn/linux/ ...

  7. 基于visual Studio2013解决C语言竞赛题之1010计算

         题目 解决代码及点评 /************************************************************************/ ...

  8. 谁知道哪有比较好的Beijing Milonga?想去参加这样的阿根廷探戈舞会~

    谁知道哪有比较好的Beijing Milonga?想去参加这样的阿根廷探戈舞会~_百度知道     谁知道哪有比较好的Beijing Milonga?想去参加这样的阿根廷探戈舞会~    2009-1 ...

  9. Android数字签名解析(三)

    在刚才開始学习android数字签名的相关知识点的时候,被资料中出现的keystore.x509.密钥对.debug.keystore弄的晕头 转向.经过一段时间的了解,总算明确一些. 一.make_ ...

  10. 支付宝打造公共账号业务网关, RSA密钥对生成

    作者: 玉龙      版权全部,同意转载. 请注明出处(创建金融_玉龙  http://www.weibo.com/u/1872245125) 原文地址: http://blog.csdn.net/ ...