正题

题目链接:https://loj.ac/p/6503


题目大意

\(n\)张卡\(m\)种,第\(i\)种卡有\(a_i\)张,求所有排列中有\(k\)对相邻且相同的卡牌。

\(1\leq n\leq 10^5,0\leq k\leq 10^5,1\leq m\leq 20000,\sum_{i=1}^ma_i=n\)


解题思路

\(k\)对相邻的相同,就是可以分成有\(n-k\)组相同的。

考虑这个问题,把每组牌分成若干组插到不同位置,先不考虑这样可能插到相邻位置的情况我们后面可以再用容斥消掉。

那么对于一个\(a\),分成\(i\)组的方案就是\(\binom{a-1}{i-1}\),因为排列,列出生成函数\(\sum_{i=1}^a\binom{a-1}{i-1}\frac{x^i}{i!}\)。

然后用分治\(NTT\)乘起来,最后第\(i\)项乘上一个\(i!\)就是方案了。

然后考虑容斥,枚举一个\(i\leq n-k\)然后相当于至少有\(k\)对相邻,现在要减去更多的,所以容斥系数就是\((-1)^{n-k-i}\binom{n-i}{k}\)

时间复杂度\(O(n\log n\log m)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=2e5+10,T=19,P=998244353;
struct Poly{
ll a[N<<2],n;
}F[T+1];bool v[T+1];
ll m,n,k,w[N],inv[N],fac[N],r[N],x[N],y[N];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
void NTT(ll *f,ll n,ll op){
for(ll i=0;i<n;i++)
if(i<r[i])swap(f[i],f[r[i]]);
for(ll p=2;p<=n;p<<=1){
ll len=p>>1,tmp=power(3,(P-1)/p);
if(op==-1)tmp=power(tmp,P-2);
for(ll k=0;k<n;k+=p){
ll buf=1;
for(ll i=k;i<k+len;i++){
ll tt=buf*f[i+len]%P;
f[i+len]=(f[i]-tt+P)%P;
f[i]=(f[i]+tt)%P;
buf=buf*tmp%P;
}
}
}
if(op==-1){
ll invn=power(n,P-2);
for(ll i=0;i<n;i++)
f[i]=f[i]*invn%P;
}
return;
}
void Mul(Poly &F,Poly &G){
ll n=1;
while(n<F.n+G.n-1)n<<=1;
for(ll i=0;i<F.n;i++)x[i]=F.a[i];
for(ll i=0;i<G.n;i++)y[i]=G.a[i];
for(ll i=F.n;i<n;i++)x[i]=0;
for(ll i=G.n;i<n;i++)y[i]=0;
for(ll i=0;i<n;i++)r[i]=(r[i>>1]>>1)|((i&1)?(n>>1):0);
NTT(x,n,1);NTT(y,n,1);
for(ll i=0;i<n;i++)x[i]=x[i]*y[i]%P;
NTT(x,n,-1);
for(ll i=0;i<n;i++)F.a[i]=x[i];
F.n=F.n+G.n-1;return;
}
ll FindA(){
for(ll i=0;i<T;i++)
if(!v[i]){v[i]=1;return i;}
}
ll C(ll n,ll m)
{return fac[n]*inv[m]%P*inv[n-m]%P;}
ll NTT(ll l,ll r){
if(l==r){
ll x=FindA();
for(ll i=1;i<=w[l];i++)
F[x].a[i]=inv[i]*C(w[l]-1,i-1)%P;
F[x].n=w[l]+1;return x;
}
ll mid=(l+r)>>1;
ll ls=NTT(l,mid),rs=NTT(mid+1,r);
Mul(F[ls],F[rs]);v[rs]=0;return ls;
}
signed main()
{
scanf("%lld%lld%lld",&m,&n,&k);inv[1]=1;
for(ll i=2;i<N;i++)inv[i]=P-inv[P%i]*(P/i)%P;
fac[0]=inv[0]=1;
for(ll i=1;i<N;i++)fac[i]=fac[i-1]*i%P,inv[i]=inv[i-1]*inv[i]%P;
for(ll i=1;i<=m;i++)scanf("%lld",&w[i]);
ll p=NTT(1,m),ans=0;
for(ll i=n-k,f=1;i>=m;i--,f=-f)
ans=(ans+f*F[p].a[i]*fac[i]%P*C(n-i,k)%P)%P;
printf("%lld\n",(ans+P)%P);
return 0;
}

Loj#6503-「雅礼集训 2018 Day4」Magic【分治NTT】的更多相关文章

  1. Loj #6503. 「雅礼集训 2018 Day4」Magic

    Loj #6503. 「雅礼集训 2018 Day4」Magic 题目描述 前进!前进!不择手段地前进!--托马斯 · 维德 魔法纪元元年. 1453 年 5 月 3 日 16 时,高维碎片接触地球. ...

  2. LOJ#6503.「雅礼集训 2018 Day4」Magic[容斥+NTT+启发式合并]

    题意 \(n\) 张卡牌 \(m\) 种颜色,询问有多少种本质不同的序列满足相邻颜色相同的位置数量等于 \(k\). 分析 首先本质不同不好直接处理,可以将同种颜色的卡牌看作是不相同的,求出答案后除以 ...

  3. 【loj#6503.】「雅礼集训 2018 Day4」Magic(生成函数+容斥)

    题面 传送门 题解 复杂度比较迷啊-- 以下以\(n\)表示颜色总数,\(m\)表示总的卡牌数 严格\(k\)对比较难算,我们考虑容斥 首先有\(i\)对就代表整个序列被分成了\(m-i\)块互不相同 ...

  4. LOJ6503. 「雅礼集训 2018 Day4」Magic(容斥原理+NTT)

    题目链接 https://loj.ac/problem/6503 题解 题中要求本质不同的序列数量,不太好搞.我们考虑给相同颜色的牌加上编号,这样所有牌都不相同.那么如果我们求出了答案,只需要将答案除 ...

  5. 2018.10.27 loj#6035. 「雅礼集训 2017 Day4」洗衣服(贪心+堆)

    传送门 显然的贪心题啊...考试没调出来10pts滚了妙的一啊 直接分别用堆贪心出洗完第iii件衣服需要的最少时间和晾完第iii件衣服需要的最少时间. 我们设第一个算出来的数组是aaa,第二个是bbb ...

  6. LOJ #6509. 「雅礼集训 2018 Day7」C

    神仙题 LOJ #6509 题意 给定一棵树,点权为0/1,每次随机一个点(可能和之前所在点相同)走到该点并将其点权异或上1 求期望的移动距离使得所有点点权相同 题解 根本不会解方程 容易发现如果一个 ...

  7. loj 6037 「雅礼集训 2017 Day4」猜数列 - 动态规划

    题目传送门 传送门 题目大意 有一个位置数列,给定$n$条线索,每条线索从某一个位置开始,一直向左或者向右走,每遇到一个还没有在线索中出现的数就将它加入线索,问最小的可能的数列长度. 依次从左到右考虑 ...

  8. Loj 6036 「雅礼集训 2017 Day4」编码 - 2-sat

    题目传送门 唯一的传送门 题目大意 给定$n$个串,每个串只包含 ' .问是否可能任意两个不同的串不满足一个是另一个的前缀. 2-sat的是显然的. 枚举每个通配符填0还是1,然后插入Trie树. 对 ...

  9. LOJ #6037.「雅礼集训 2017 Day4」猜数列 状压dp

    这个题的搜索可以打到48分…… #include <cstdio> #include <cstring> #include <algorithm> ; bool m ...

随机推荐

  1. mongoose 更新数据时不验证数据(忽略设定的集合规则)的问题

    问题: mongoose 更新数据时不验证数据(忽略设定的集合规则)的问题 参考: http://www.mongoosejs.net/docs/api.html#updateone_updateOn ...

  2. Longhorn,企业级云原生容器分布式存储 - 支持 ReadWriteMany (RWX) 工作负载(实验性功能)

    内容来源于官方 Longhorn 1.1.2 英文技术手册. 系列 Longhorn 是什么? Longhorn 企业级云原生容器分布式存储解决方案设计架构和概念 Longhorn 企业级云原生容器分 ...

  3. Mybatis的分页工具

    配置拦截器插件 特别注意,新版拦截器是 com.github.pagehelper.PageInterceptor. com.github.pagehelper.PageHelper 现在是一个特殊的 ...

  4. Spring详解(九)------事务管理

    1.事务介绍 事务(Transaction),一般是指要做的或所做的事情.在计算机术语中是指访问并可能更新数据库中各种数据项的一个程序执行单元(unit). 这里我们以取钱的例子来讲解:比如你去ATM ...

  5. Mybatis出现错误org.apache.ibatis.executor.ExecutorException: No constructor found in

    错误显示没有发现构造器. 其实就是重写了构造器后,忘了补写一个默认的空参构造器了.此类的错误还经常出现在spring等这种大量使用反射的框架中.因为这些框架在调用反射的类后会默认调用默认的构造器 解决 ...

  6. Mybatis--级联(一)

    级联是resultMap中的配置. 级联分为3种 鉴别器(discrimination):根据某些条件采用具体实现具体实现类级联,如体检表根据性别去区分 一对一:学生和学生证 一对多:班主任和学生. ...

  7. Alibaba cloud 3 安装docker

    最近因为公司买阿里服务器装的 Alibaba cloud Linux 系统,在部署环境的时候也是遇到各种坑,网上教程大多都是其他系统的,今天就来分享一下自己安装Docker的步骤,同时也是给自己记录一 ...

  8. form表单中id与name的区别

    以前经常写form表单时,不写id和name,总觉得没有什么用.后来一看后台套完的页面发现,他们都补上name,不知道所以然,就查了一下资料,吓我一跳,要是照我那样写根本不会有数据传到服务器.原来表单 ...

  9. Linux 单实例oracle安装步骤

    一.查看逻辑盘大小,执行 lsblk 二.查看硬盘及分区信息 ,执行 fdisk -l 三.将物理硬盘分区初始化为物理卷,以便LVM使用 ,创建pv pvcreate /dev/sdb 四.查看物理卷 ...

  10. FPGA nios软核编写液晶屏LCD12864驱动程序源码以及注意事项,本人亲自踩坑,重要!!!

    LCD12864引脚如下: FPGA开发板得提供,3.3v电压,5v电压,普通io都是3.3v电压 DB:数据脚,得用双向io,因为程序里面需要读取液晶的应答(普通io3.3v可以) E:?输出引脚即 ...