正题

题目链接:https://www.luogu.com.cn/problem/P3793


题目大意

给出\(n\)个数字的一个序列\(m\)次询问区间最大值

保证数据随机

\(1\leq n,m\leq 2\times 10^7\)


解题思路

使用\(ST\)表可以做到\(O(1)\)询问,但是预处理的时空复杂度都是\(O(n\log n)\),且自带大常数导致过不了。

如何加快预处理的时间,(因为是lxl的题目所以)考虑使用分块。每次询问可以分为整块的部分和不是整块的零散部分。

去掉没有跨块的情况,那么零散的部分就是块内前后缀最大值。然后整块的部分用\(ST\)表就好了。

那么没有跨块的情况是不是还需要给每个块维护一个\(ST\)表?这样空间还是过不了,其实可以考虑将没有跨块的情况按顺序每个块每个块离线处理,这样就可以过了。

但是数据保证随机,所以随机到同一个块内的概率是\(\frac{1}{T}\),也就是期望\(\sqrt n\)次,暴力处理是\(O(\sqrt n)\)的,所以直接暴力处理就可以了

时间复杂度\(O(n\log\sqrt n+m)\)。


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=2e7+10;
namespace GenHelper{
unsigned z1,z2,z3,z4,b;
unsigned rand_()
{
b=((z1<<6)^z1)>>13;
z1=((z1&4294967294U)<<18)^b;
b=((z2<<2)^z2)>>27;
z2=((z2&4294967288U)<<2)^b;
b=((z3<<13)^z3)>>21;
z3=((z3&4294967280U)<<7)^b;
b=((z4<<3)^z4)>>12;
z4=((z4&4294967168U)<<13)^b;
return (z1^z2^z3^z4);
}
}
void srand(unsigned x)
{using namespace GenHelper;
z1=x; z2=(~x)^0x233333333U; z3=x^0x1234598766U; z4=(~x)+51;}
int read()
{
using namespace GenHelper;
int a=rand_()&32767;
int b=rand_()&32767;
return a*32768+b;
}
int n,m,a[N],lg[N],p[N],q[N],g[5000][13];
int L[5000],R[5000],pos[N];
unsigned s;
unsigned long long ans;
int AskT(int l,int r){
if(l>r)return 0;int z=lg[r-l+1];
return max(g[l][z],g[r-(1<<z)+1][z]);
}
int main()
{
scanf("%d%d%u",&n,&m,&s);
srand(s);
for(int i=1;i<=n;i++)a[i]=read();
int T=sqrt(n);
for(int i=1;i<=T;i++)
L[i]=R[i-1]+1,R[i]=i*T;
if(R[T]!=n)++T,L[T]=R[T-1]+1,R[T]=n;
for(int i=1;i<=T;i++){
for(int j=L[i];j<=R[i];j++)pos[j]=i,g[i][0]=max(g[i][0],a[j]);
p[L[i]]=a[L[i]];q[R[i]]=a[R[i]];
for(int j=L[i]+1;j<=R[i];j++)p[j]=max(p[j-1],a[j]);
for(int j=R[i]-1;j>=L[i];j--)q[j]=max(q[j+1],a[j]);
}
for(int j=1;(1<<j)<=T;j++)
for(int i=1;i+(1<<j)-1<=T;i++)
g[i][j]=max(g[i][j-1],g[i+(1<<j-1)][j-1]);
for(int i=2;i<=T;i++)lg[i]=lg[i>>1]+1;
for(int i=1;i<=m;i++){
int l=read(),r=read();
l=l%n+1;r=r%n+1;
if(l>r)swap(l,r);
int x=pos[l],y=pos[r];
int tmp=0;
if(x==y){
for(int i=l;i<=r;i++)
tmp=max(tmp,a[i]);
}
else{
tmp=AskT(x+1,y-1);
tmp=max(tmp,max(q[l],p[r]));
}
ans+=tmp;
}
printf("%llu\n",ans);
}

P3793-由乃救爷爷【分块,ST表】的更多相关文章

  1. Luogu3793 由乃救爷爷 分块、ST表

    传送门 因为昨天写暴力写挂在UOJ上用快排惨遭卡常,所以今天准备写一个卡常题消遣消遣,然后时间又垫底了QAQ 这道题显然需要支持一个\(O(N)\)预处理\(O(1)\)查询的ST表,显然普通的ST表 ...

  2. [洛谷P3793]由乃救爷爷

    题目大意:有$n(n\leqslant2\times10^7)$个数,$m(m\leqslant2\times10^7)$个询问,每次询问问区间$[l,r]$中的最大值.保证数据随机 题解:分块,处理 ...

  3. 【JZOJ5064】【GDOI2017第二轮模拟day2】友好城市 Kosarajo算法+bitset+ST表+分块

    题面 在Byteland 一共有n 座城市,编号依次为1 到n,这些城市之间通过m 条单向公路连接. 对于两座不同的城市a 和b,如果a 能通过这些单向道路直接或间接到达b,且b 也能如此到达a,那么 ...

  4. Luogu 3793 由乃救爷爷

    \(\verb|Luogu 3793 由乃救爷爷|\) rmq,数据随机 \(n,\ m\leq 2\times10^7\) lxl ST表 分块,大小设为 \(x\) 预处理每个块两端到块内每个点的 ...

  5. [bzoj4540][Hnoi2016][序列] (莫队算法+单调栈+st表)

    Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,ar-1,ar.若1≤l≤s≤t≤r≤n,则称a ...

  6. [BZOJ1012] [JSOI2008] 最大数maxnumber (ST表)

    Description 现在请求你维护一个数列,要求提供以下两种操作:1. 查询操作.语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值.限制:L不超过当前数列的长度.2. 插 ...

  7. CF1039E Summer Oenothera Exhibition 贪心、根号分治、倍增、ST表

    传送门 感谢这一篇博客的指导(Orzwxh) $PS$:默认数组下标为$1$到$N$ 首先很明显的贪心:每一次都选择尽可能长的区间 不妨设$d_i$表示在取当前$K$的情况下,左端点为$i$的所有满足 ...

  8. CF1039E Summer Oenothera Exhibition 根号分治,LCT,ST表

    CF1039E Summer Oenothera Exhibition LG传送门 根号分治好题. 可以先看我的根号分治总结. 题意就是给出长度为\(n\)的区间和\(q\)组询问以及一个\(w\), ...

  9. 【笔记】自学ST表笔记

    自学ST表笔记 说实话原先QBXT学的ST表忘的差不多了吧...... 我重新自学巩固一下(回忆一下) 顺便把原先一些思想来源的原博发上来 一.ST表简介 ST表,建表时间\(O(n\cdot log ...

随机推荐

  1. NGINX Ingress控制器1.0.0升级迁移文档(翻译)

    Ingress 是什么 Ingress 是对k8s集群中服务的外部访问进行管理的 API 对象,典型的访问方式是 HTTP. Ingress 可以提供负载均衡.SSL 终结和基于名称的虚拟托管. 最近 ...

  2. 在JavaScript中安全访问嵌套对象

    大多数情况下,当我们使用JavaScript时,我们将处理嵌套对象,并且通常我们需要安全地访问最里面的嵌套值. 比如: const user = { id: 101, email: 'jack@dev ...

  3. C++面试题(四)——智能指针的原理和实现

    C++面试题(一).(二)和(三)都搞定的话,恭喜你来到这里,这基本就是c++面试题的最后一波了.     1,你知道智能指针吗?智能指针的原理.     2,常用的智能指针.     3,智能指针的 ...

  4. ubuntu 查看系统信息

    1.系统信息 uname -a 显示linux的内核版本和系统是多少位的:X86_64代表系统是64位的. Linux field-ubuntu-18 4.15.0-20-generic #21-Ub ...

  5. final 关键字,你想知道的都在这里

    哈喽,大家好,我是指北君. 介绍完 native.static 关键字后,指北君马不停蹄,接着为大家介绍另一个常用的关键字--final. 对于Java中的 final 关键字,我们首先可以从字面意思 ...

  6. Linux·命令收藏

    时间:2018-11-20 记录:byzqy 标题:Linux命令大全(手册) 地址:http://man.linuxde.net/ 标题:Linux script命令 -- 终端里的记录器 地址:h ...

  7. kubernetes部署一个应用程序

    文章原文 部署 nginx Deployment 如果你已经完成了Kubernetes的搭建,那我跟我一块来部署第一个应用程序吧.没有完成 Kubernetes 集群搭建的,请参考文档 使用 kube ...

  8. 史上最全git命令集

    配置化命令 git config --global user.name "Your Name" git config --global user.email "email ...

  9. tslib移植arm及使用

    测试平台 宿主机平台:Ubuntu 12.04.4 LTS 目标机:Easy-ARM IMX283 目标机内核:Linux 2.6.35.3 tslib 1.4 下载  https://gitlab. ...

  10. javascript(1)简介

    点击查看代码 ### javascript 1.JavaScript简介 javascript是一种轻量级的脚本语言,可以部署在多种环境,最常见的部署环境就是浏览器, 脚本语言: 它不具备开发操作系统 ...