正题

题目链接:https://www.luogu.com.cn/problem/P3793


题目大意

给出\(n\)个数字的一个序列\(m\)次询问区间最大值

保证数据随机

\(1\leq n,m\leq 2\times 10^7\)


解题思路

使用\(ST\)表可以做到\(O(1)\)询问,但是预处理的时空复杂度都是\(O(n\log n)\),且自带大常数导致过不了。

如何加快预处理的时间,(因为是lxl的题目所以)考虑使用分块。每次询问可以分为整块的部分和不是整块的零散部分。

去掉没有跨块的情况,那么零散的部分就是块内前后缀最大值。然后整块的部分用\(ST\)表就好了。

那么没有跨块的情况是不是还需要给每个块维护一个\(ST\)表?这样空间还是过不了,其实可以考虑将没有跨块的情况按顺序每个块每个块离线处理,这样就可以过了。

但是数据保证随机,所以随机到同一个块内的概率是\(\frac{1}{T}\),也就是期望\(\sqrt n\)次,暴力处理是\(O(\sqrt n)\)的,所以直接暴力处理就可以了

时间复杂度\(O(n\log\sqrt n+m)\)。


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=2e7+10;
namespace GenHelper{
unsigned z1,z2,z3,z4,b;
unsigned rand_()
{
b=((z1<<6)^z1)>>13;
z1=((z1&4294967294U)<<18)^b;
b=((z2<<2)^z2)>>27;
z2=((z2&4294967288U)<<2)^b;
b=((z3<<13)^z3)>>21;
z3=((z3&4294967280U)<<7)^b;
b=((z4<<3)^z4)>>12;
z4=((z4&4294967168U)<<13)^b;
return (z1^z2^z3^z4);
}
}
void srand(unsigned x)
{using namespace GenHelper;
z1=x; z2=(~x)^0x233333333U; z3=x^0x1234598766U; z4=(~x)+51;}
int read()
{
using namespace GenHelper;
int a=rand_()&32767;
int b=rand_()&32767;
return a*32768+b;
}
int n,m,a[N],lg[N],p[N],q[N],g[5000][13];
int L[5000],R[5000],pos[N];
unsigned s;
unsigned long long ans;
int AskT(int l,int r){
if(l>r)return 0;int z=lg[r-l+1];
return max(g[l][z],g[r-(1<<z)+1][z]);
}
int main()
{
scanf("%d%d%u",&n,&m,&s);
srand(s);
for(int i=1;i<=n;i++)a[i]=read();
int T=sqrt(n);
for(int i=1;i<=T;i++)
L[i]=R[i-1]+1,R[i]=i*T;
if(R[T]!=n)++T,L[T]=R[T-1]+1,R[T]=n;
for(int i=1;i<=T;i++){
for(int j=L[i];j<=R[i];j++)pos[j]=i,g[i][0]=max(g[i][0],a[j]);
p[L[i]]=a[L[i]];q[R[i]]=a[R[i]];
for(int j=L[i]+1;j<=R[i];j++)p[j]=max(p[j-1],a[j]);
for(int j=R[i]-1;j>=L[i];j--)q[j]=max(q[j+1],a[j]);
}
for(int j=1;(1<<j)<=T;j++)
for(int i=1;i+(1<<j)-1<=T;i++)
g[i][j]=max(g[i][j-1],g[i+(1<<j-1)][j-1]);
for(int i=2;i<=T;i++)lg[i]=lg[i>>1]+1;
for(int i=1;i<=m;i++){
int l=read(),r=read();
l=l%n+1;r=r%n+1;
if(l>r)swap(l,r);
int x=pos[l],y=pos[r];
int tmp=0;
if(x==y){
for(int i=l;i<=r;i++)
tmp=max(tmp,a[i]);
}
else{
tmp=AskT(x+1,y-1);
tmp=max(tmp,max(q[l],p[r]));
}
ans+=tmp;
}
printf("%llu\n",ans);
}

P3793-由乃救爷爷【分块,ST表】的更多相关文章

  1. Luogu3793 由乃救爷爷 分块、ST表

    传送门 因为昨天写暴力写挂在UOJ上用快排惨遭卡常,所以今天准备写一个卡常题消遣消遣,然后时间又垫底了QAQ 这道题显然需要支持一个\(O(N)\)预处理\(O(1)\)查询的ST表,显然普通的ST表 ...

  2. [洛谷P3793]由乃救爷爷

    题目大意:有$n(n\leqslant2\times10^7)$个数,$m(m\leqslant2\times10^7)$个询问,每次询问问区间$[l,r]$中的最大值.保证数据随机 题解:分块,处理 ...

  3. 【JZOJ5064】【GDOI2017第二轮模拟day2】友好城市 Kosarajo算法+bitset+ST表+分块

    题面 在Byteland 一共有n 座城市,编号依次为1 到n,这些城市之间通过m 条单向公路连接. 对于两座不同的城市a 和b,如果a 能通过这些单向道路直接或间接到达b,且b 也能如此到达a,那么 ...

  4. Luogu 3793 由乃救爷爷

    \(\verb|Luogu 3793 由乃救爷爷|\) rmq,数据随机 \(n,\ m\leq 2\times10^7\) lxl ST表 分块,大小设为 \(x\) 预处理每个块两端到块内每个点的 ...

  5. [bzoj4540][Hnoi2016][序列] (莫队算法+单调栈+st表)

    Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,ar-1,ar.若1≤l≤s≤t≤r≤n,则称a ...

  6. [BZOJ1012] [JSOI2008] 最大数maxnumber (ST表)

    Description 现在请求你维护一个数列,要求提供以下两种操作:1. 查询操作.语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值.限制:L不超过当前数列的长度.2. 插 ...

  7. CF1039E Summer Oenothera Exhibition 贪心、根号分治、倍增、ST表

    传送门 感谢这一篇博客的指导(Orzwxh) $PS$:默认数组下标为$1$到$N$ 首先很明显的贪心:每一次都选择尽可能长的区间 不妨设$d_i$表示在取当前$K$的情况下,左端点为$i$的所有满足 ...

  8. CF1039E Summer Oenothera Exhibition 根号分治,LCT,ST表

    CF1039E Summer Oenothera Exhibition LG传送门 根号分治好题. 可以先看我的根号分治总结. 题意就是给出长度为\(n\)的区间和\(q\)组询问以及一个\(w\), ...

  9. 【笔记】自学ST表笔记

    自学ST表笔记 说实话原先QBXT学的ST表忘的差不多了吧...... 我重新自学巩固一下(回忆一下) 顺便把原先一些思想来源的原博发上来 一.ST表简介 ST表,建表时间\(O(n\cdot log ...

随机推荐

  1. GitNote基于git的个人云笔记

    优点 可以存储到git服务(如github,giteee)中的能看到历史版本的git记事本工具. git 是一个很棒的工具,GitNote 支持 git 的全部特性,并且不依赖本地 Git 环境. 你 ...

  2. h5与小程序互相跳转,传参和获取参数

    1.h5跳转到小程序 首先引入js文件 <script src="https://res.wx.qq.com/open/js/jweixin-1.3.2.js">< ...

  3. DotNetCore深入了解:HTTPClientFactory类

    一.HttpClient使用 在C#中,如果我们需要向某特定的URL地址发送Http请求的时候,通常会用到HttpClient类.会将HttpClient包裹在using内部进行声明和初始化,如下面的 ...

  4. C++11 shared_ptr(智能指针)详解

    要确保用 new 动态分配的内存空间在程序的各条执行路径都能被释放是一件麻烦的事情.C++ 11 模板库的 <memory> 头文件中定义的智能指针,即 shared _ptr 模板,就是 ...

  5. jvm系列(五):jvm调优-从eclipse开始

    概述 什么是jvm调优呢?jvm调优就是根据gc日志分析jvm内存分配.回收的情况来调整各区域内存比例或者gc回收的策略:更深一层就是根据dump出来的内存结构和线程栈来分析代码中不合理的地方给予改进 ...

  6. Quartz任务调度(1)概念例析快速

    实例解析概念 在quartz中,有几个核心类和接口:Job.JobDetail.Trigger.Calendar.Scheduler.下面我们结合实例来分析这些类的角色定位.现在我们有一个新闻网站,它 ...

  7. WPF 勾选划线

    最近项目需要一个左右侧一对多的划线功能 我们先来看一下效果秃: 主要功能: 支持动态添加 支持复选 支持修改颜色 支持动态宽度 主要实现:事件的传递 应用场景:购物互选,食品搭配,角色互选 数据源 左 ...

  8. DNS地址列表

    DNS测试工具(DNSBench):https://www.grc.com/dns/benchmark.htm DNS列表收集: Google DNS [URL]https://developers. ...

  9. jQuery中ajax请求的六种方法(三、六):load()方法

    6.load()方法 load的html页面 <!DOCTYPE html> <html> <head> <meta charset="UTF-8& ...

  10. EL表达式学习(二)

    1.从特定域中获取值: 2.从请求页面的input标签中,获取值:(同servlet中的getParameter和getParameterValues): 3.获取请求头(同servlet中的getH ...