正题

题目链接:https://www.luogu.com.cn/problem/P3793


题目大意

给出\(n\)个数字的一个序列\(m\)次询问区间最大值

保证数据随机

\(1\leq n,m\leq 2\times 10^7\)


解题思路

使用\(ST\)表可以做到\(O(1)\)询问,但是预处理的时空复杂度都是\(O(n\log n)\),且自带大常数导致过不了。

如何加快预处理的时间,(因为是lxl的题目所以)考虑使用分块。每次询问可以分为整块的部分和不是整块的零散部分。

去掉没有跨块的情况,那么零散的部分就是块内前后缀最大值。然后整块的部分用\(ST\)表就好了。

那么没有跨块的情况是不是还需要给每个块维护一个\(ST\)表?这样空间还是过不了,其实可以考虑将没有跨块的情况按顺序每个块每个块离线处理,这样就可以过了。

但是数据保证随机,所以随机到同一个块内的概率是\(\frac{1}{T}\),也就是期望\(\sqrt n\)次,暴力处理是\(O(\sqrt n)\)的,所以直接暴力处理就可以了

时间复杂度\(O(n\log\sqrt n+m)\)。


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=2e7+10;
namespace GenHelper{
unsigned z1,z2,z3,z4,b;
unsigned rand_()
{
b=((z1<<6)^z1)>>13;
z1=((z1&4294967294U)<<18)^b;
b=((z2<<2)^z2)>>27;
z2=((z2&4294967288U)<<2)^b;
b=((z3<<13)^z3)>>21;
z3=((z3&4294967280U)<<7)^b;
b=((z4<<3)^z4)>>12;
z4=((z4&4294967168U)<<13)^b;
return (z1^z2^z3^z4);
}
}
void srand(unsigned x)
{using namespace GenHelper;
z1=x; z2=(~x)^0x233333333U; z3=x^0x1234598766U; z4=(~x)+51;}
int read()
{
using namespace GenHelper;
int a=rand_()&32767;
int b=rand_()&32767;
return a*32768+b;
}
int n,m,a[N],lg[N],p[N],q[N],g[5000][13];
int L[5000],R[5000],pos[N];
unsigned s;
unsigned long long ans;
int AskT(int l,int r){
if(l>r)return 0;int z=lg[r-l+1];
return max(g[l][z],g[r-(1<<z)+1][z]);
}
int main()
{
scanf("%d%d%u",&n,&m,&s);
srand(s);
for(int i=1;i<=n;i++)a[i]=read();
int T=sqrt(n);
for(int i=1;i<=T;i++)
L[i]=R[i-1]+1,R[i]=i*T;
if(R[T]!=n)++T,L[T]=R[T-1]+1,R[T]=n;
for(int i=1;i<=T;i++){
for(int j=L[i];j<=R[i];j++)pos[j]=i,g[i][0]=max(g[i][0],a[j]);
p[L[i]]=a[L[i]];q[R[i]]=a[R[i]];
for(int j=L[i]+1;j<=R[i];j++)p[j]=max(p[j-1],a[j]);
for(int j=R[i]-1;j>=L[i];j--)q[j]=max(q[j+1],a[j]);
}
for(int j=1;(1<<j)<=T;j++)
for(int i=1;i+(1<<j)-1<=T;i++)
g[i][j]=max(g[i][j-1],g[i+(1<<j-1)][j-1]);
for(int i=2;i<=T;i++)lg[i]=lg[i>>1]+1;
for(int i=1;i<=m;i++){
int l=read(),r=read();
l=l%n+1;r=r%n+1;
if(l>r)swap(l,r);
int x=pos[l],y=pos[r];
int tmp=0;
if(x==y){
for(int i=l;i<=r;i++)
tmp=max(tmp,a[i]);
}
else{
tmp=AskT(x+1,y-1);
tmp=max(tmp,max(q[l],p[r]));
}
ans+=tmp;
}
printf("%llu\n",ans);
}

P3793-由乃救爷爷【分块,ST表】的更多相关文章

  1. Luogu3793 由乃救爷爷 分块、ST表

    传送门 因为昨天写暴力写挂在UOJ上用快排惨遭卡常,所以今天准备写一个卡常题消遣消遣,然后时间又垫底了QAQ 这道题显然需要支持一个\(O(N)\)预处理\(O(1)\)查询的ST表,显然普通的ST表 ...

  2. [洛谷P3793]由乃救爷爷

    题目大意:有$n(n\leqslant2\times10^7)$个数,$m(m\leqslant2\times10^7)$个询问,每次询问问区间$[l,r]$中的最大值.保证数据随机 题解:分块,处理 ...

  3. 【JZOJ5064】【GDOI2017第二轮模拟day2】友好城市 Kosarajo算法+bitset+ST表+分块

    题面 在Byteland 一共有n 座城市,编号依次为1 到n,这些城市之间通过m 条单向公路连接. 对于两座不同的城市a 和b,如果a 能通过这些单向道路直接或间接到达b,且b 也能如此到达a,那么 ...

  4. Luogu 3793 由乃救爷爷

    \(\verb|Luogu 3793 由乃救爷爷|\) rmq,数据随机 \(n,\ m\leq 2\times10^7\) lxl ST表 分块,大小设为 \(x\) 预处理每个块两端到块内每个点的 ...

  5. [bzoj4540][Hnoi2016][序列] (莫队算法+单调栈+st表)

    Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,ar-1,ar.若1≤l≤s≤t≤r≤n,则称a ...

  6. [BZOJ1012] [JSOI2008] 最大数maxnumber (ST表)

    Description 现在请求你维护一个数列,要求提供以下两种操作:1. 查询操作.语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值.限制:L不超过当前数列的长度.2. 插 ...

  7. CF1039E Summer Oenothera Exhibition 贪心、根号分治、倍增、ST表

    传送门 感谢这一篇博客的指导(Orzwxh) $PS$:默认数组下标为$1$到$N$ 首先很明显的贪心:每一次都选择尽可能长的区间 不妨设$d_i$表示在取当前$K$的情况下,左端点为$i$的所有满足 ...

  8. CF1039E Summer Oenothera Exhibition 根号分治,LCT,ST表

    CF1039E Summer Oenothera Exhibition LG传送门 根号分治好题. 可以先看我的根号分治总结. 题意就是给出长度为\(n\)的区间和\(q\)组询问以及一个\(w\), ...

  9. 【笔记】自学ST表笔记

    自学ST表笔记 说实话原先QBXT学的ST表忘的差不多了吧...... 我重新自学巩固一下(回忆一下) 顺便把原先一些思想来源的原博发上来 一.ST表简介 ST表,建表时间\(O(n\cdot log ...

随机推荐

  1. 【权限管理】Spring Security 执行流程

    转自:https://blog.csdn.net/weixin_37689658/article/details/92752890 1.基本配置使用 (1)创建配置类 创建一个配置类SecurityC ...

  2. SpringBoot集成<个推推送> Maven 下载jar包异常处理本地打包下载

    问题描述 公司需要对用户进行消息推送,选择了个推,由于是Java进行开发,个推操作文档, 这是官网上安装的方式,可是不成功,无论怎么样都无法把Jar包下载下来! MAVEN方式(本人测试Jar无法下载 ...

  3. Centos7 安装 redis4.x

    一.安装redis 第一步:下载redis安装包 wget http://download.redis.io/releases/redis-4.0.6.tar.gz [root@iZwz991stxd ...

  4. struts2思想学习(一)

    OOP 面向对象编程 AOP 面向切面编程 而在struts2 处处体现了面向切面编程的思想(动态代理最典型)! 拦截器其实也是面向切面编程!拦截器切断了所有请求到action的操作 并做了很多的前提 ...

  5. react项目实现多语言切换

    网站的语言切换功能大家都见过不少,一般都是一个下拉框选择语言,如果让我们想一下怎么实现这个功能,我相信大家都是有哥大概思路,一个语言切换的select,将当前的选择的语言存在全局,根据这个语言的key ...

  6. Spring Mvc原理分析(一)

    Servlet生命周期了解 Servlet的生命(周期)是由容器(eg:Tomcat)管理的,换句话说,Servlet程序员不能用代码控制其生命. 加载和实例化:时机取决于web.xml的定义,如果有 ...

  7. 自己封装一个Object.freeze()方法

    1.遍历所有属性和方法 2.修改遍历到的属性的描述 3.Object.seal() Object.defineProperty(Object,'freezePolyfill',{ value:func ...

  8. Panel添加边框颜色和边框粗细调整

    Panel控件添加边框颜色 C# WinForm窗体控件Panel修改边框颜色以及边框宽度方法 - JiYF - 博客园 (cnblogs.com) 1.新建一个用户控件的项目,如下: 2.添加一个P ...

  9. Python中的私有属性私有方法、类属性类方法以及单例设计模式

    私有属性是对象不希望公开的属性,私有方法是对象不希望公开的方法.在定义私有属性和私有方法时,在属性或者方法前,加上__(两个下划线) 公有方法可以通过对象名直接调用,私有方法不能通过对象名直接调用,只 ...

  10. Netty ServerBootstrap如何绑定端口

    这篇讲netty服务端ServerBootstrap如何启动 前言 BootStrap在netty的应用程序中负责引导服务器和客户端.netty包含了两种不同类型的引导: 使用服务器的ServerBo ...