YbtOJ#893-带权的图【高斯消元,结论】
正题
题目链接:https://www.ybtoj.com.cn/problem/893
题目大意
给出一张\(n\)个点\(m\)条边的无向联通图,每条边正反向各有\(A,B,C\)三种边权。
保证满足
\]
\]
且对于每个环\([v_1,v_2...v_n](v_1=v_n)\)
\]
现在给你\(A,B\)边权,求\(C\)边权。
数据保证解唯一,所有限制都在模\(P\)意义下
\(n\in[1,100],m\in[1,2000],P\in[1,10^{18}]\cup Pri\)
解题思路
最后一个环的限制很麻烦,因为环很多。
先考虑原图的任意一颗生成树\(T\)上,对于任意一条非树边\((u,v)\)可以表示一个\(u->v->u\)的环。并且因为反过来走边权为负,所以你可以通过用一些小环相互抵消出一个大环。
结论就是所有的环都可以被一些用非树边表示的环相互抵消表示。所以我们就可以将环的数量减少到\(O(m)\)级别了。
暴力消元\(O(m^3)\)显然无法通过本题,我们还需要优化。
设\(D_{x,y}=B_{x,y}\times C_{x,y}-A_{x,y}\),那么第一个条件就表示成了每个环\(D\)的和为\(0\)。
并且还能发现一个性质,对于一个非树边表示的环\((x,y)\),
\]
(其中\(path(x,y)\)表示树上路径\(x,y\)的\(D\)值和)
所以可以证明从\(x\)走到\(y\)的所有路径权值相同
那么我们可以设\(f_x=path(1,x)\),那么\(D_{x,y}=f_y-f_x\)。
这样对于每个点就可以根据\(C\)的限制列出一个方程
\]
然后高斯消元即可,时间复杂度\(O(n^3)\)
注意模数比较大,要写龟速乘
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=110;
struct node{
ll x,y,a,b;
}e[N*20];
ll n,m,P,f[N];
ll mul(ll a,ll b){
a%=P;b%=P;
ll tmp=(long double)a*b/P;
long double ans=a*b-tmp*P;
if(ans>=P)ans-=P;
else if(ans<0)ans+=P;
return ans;
}
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=mul(ans,x);
x=mul(x,x);b>>=1;
}
return ans;
}
namespace G{
ll a[N][N],b[N];
void solve(ll *f){
for(ll i=1;i<=n;i++){
ll p=i;
for(ll j=i;j<=n;j++)
if(a[j][i]){p=j;break;}
swap(a[i],a[p]);swap(b[i],b[p]);
ll inv=power(a[i][i],P-2);b[i]=mul(b[i],inv);
for(ll j=i;j<=n;j++)a[i][j]=mul(a[i][j],inv);
for(ll j=i+1;j<=n;j++){
ll rate=P-a[j][i];
for(ll k=i;k<=n;k++)
a[j][k]=(a[j][k]+mul(rate,a[i][k]))%P;
b[j]=(b[j]+mul(rate,b[i]))%P;
}
}
for(ll i=n;i>=1;i--){
for(ll j=i+1;j<=n;j++)
(b[i]+=P-mul(b[j],a[i][j]))%=P;
f[i]=b[i];
}
return;
}
}
signed main()
{
freopen("graph.in","r",stdin);
freopen("graph.out","w",stdout);
scanf("%lld%lld%lld",&n,&m,&P);
for(ll i=1;i<=m;i++)
scanf("%lld%lld%lld%lld",&e[i].x,&e[i].y,&e[i].a,&e[i].b);
for(ll i=1;i<=m;i++){
ll x=e[i].x,y=e[i].y,a=e[i].a,b=e[i].b;b=power(b,P-2);
(G::a[x][y]+=b)%=P;(G::a[x][x]+=P-b)%=P;(G::b[x]+=P-mul(a,b))%=P;
swap(x,y);a=P-a;
(G::a[x][y]+=b)%=P;(G::a[x][x]+=P-b)%=P;(G::b[x]+=P-mul(a,b))%=P;
}
for(ll i=1;i<=n;i++)G::a[1][i]=0;
G::a[1][1]=1;G::b[1]=0;G::solve(f);
for(ll i=1;i<=m;i++){
ll x=e[i].x,y=e[i].y,a=e[i].a,b=e[i].b;b=power(b,P-2);
printf("%lld\n",mul((f[y]-f[x]+a+P)%P,b));
}
return 0;
}
YbtOJ#893-带权的图【高斯消元,结论】的更多相关文章
- 4.23 子串 AC自动机 概率期望 高斯消元
考虑40分. 设出状态 f[i]表示匹配到了i位还有多少期望长度能停止.可以发现这个状态有环 需要高斯消元. 提供一种比较简单的方法:由于期望的线性可加性 可以设状态f[i]表示由匹配到i到匹配到i+ ...
- POJ 2947-Widget Factory(高斯消元解同余方程式)
题目地址:id=2947">POJ 2947 题意:N种物品.M条记录,接写来M行,每行有K.Start,End,表述从星期Start到星期End,做了K件物品.接下来的K个数为物品的 ...
- [CF963E]Circles of Waiting[高斯消元网格图优化+期望]
题意 你初始位于 \((0,0)\) ,每次向上下左右四个方向走一步有确定的概率,问你什么时候可以走到 以 \((0,0)\)为圆心,\(R\) 为半径的圆外. \(R\le 50\) 分析 暴力 \ ...
- Educational Codeforces Round 63 (Rated for Div. 2) E 带模高斯消元
https://codeforces.com/contest/1155/problem/E 题意 \(f(x)=a_0+a_1x+a_2x^2+...+a_kx^k,k \leq 10,0 \leq ...
- BZOJ 3143 HNOI2013 游走 高斯消元 期望
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...
- bzoj 2115: [Wc2011] Xor xor高斯消元
2115: [Wc2011] Xor Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 797 Solved: 375[Submit][Status] ...
- 线性空间和异或空间(线性基)bzoj4004贪心+高斯消元优秀模板
线性空间:是由一组基底构成的所有可以组成的向量空间 对于一个n*m的矩阵,高斯消元后的i个主元可以构成i维的线性空间,i就是矩阵的秩 并且这i个主元线性无关 /* 每个向量有权值,求最小权极大线性无关 ...
- BZOJ 3143 游走(贪心+期望+高斯消元)
一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...
- 【BZOJ】2337: [HNOI2011]XOR和路径 期望+高斯消元
[题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不 ...
随机推荐
- Centos7上yum安装mongodb(安装epel中的版本可能会比较老)
yum install epel-release 搜索mongodb-server 安装mongodb yum install mongodb-server.x86_64 配置mongodb vim ...
- RabbitMQ 安装与配置管理
rabbitmq安装 1. 安装erlang yum install erlang xmlto 2. 安装rabbitmq rpm包 #wget http://www.rabbitmq.com/rel ...
- java 文件上传(图片上传)
1.FTP工具类 代码如下: package com.taotao.common.utils; import java.io.File; import java.io.FileInputStream; ...
- Mybatis--级联(一)
级联是resultMap中的配置. 级联分为3种 鉴别器(discrimination):根据某些条件采用具体实现具体实现类级联,如体检表根据性别去区分 一对一:学生和学生证 一对多:班主任和学生. ...
- vue项目梳理
vue实例 vue2.x中创建vue实例,挂载到dom节点 点击查详情 <div id="vue_det"> <h1>site : {{site}}< ...
- gimp 缩放图片 python script
滤镜 -> Python Fu -> 控制台,复制粘贴下面代码. 然后 scale_image(800, 800) 图片自动缩放为 800*800 了 这个代码是傻傻的缩放,你可以把它改成 ...
- multipass指定virualbox搭建k8s集群(选择docker作为默认容器)
目录 前言 步骤 初始化三台虚拟机 统一安装docker 修改docker镜像源 查看masterIP 安装master节点(重点设置) 查看master的token 安装worker节点 测试 部署 ...
- docker入门及常用命令
Docker简介 Docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从Apache2.0协议开源. Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级.可移植的容器中,然后发布 ...
- Geode member发现机制
Geode member发现机制 Apache Geode 为集群和客户端服务器间提供了多种member 发现机制,具体如下: Peer Member Discovery Standalone Mem ...
- 什么是内存屏障? Why Memory Barriers ?
要了解如何使用memory barrier,最好的方法是明白它为什么存在.CPU硬件设计为了提高指令的执行速度,增设了两个缓冲区(store buffer, invalidate que ...