Solution -「ROI 2019」「LOJ #3192」课桌
\(\mathcal{Description}\)
Link.
原题意足够简洁啦。(
\(\mathcal{Solution}\)
乍一看比较棘手,但可以从座位的安排方式入手,有结论:
一个班的学生按身高排序后,相邻的两两坐在一桌。
证明略,比较显。
第二个结论:
设按上述方案分桌,从左至右将每桌编号为 \(1\sim n\)。则每个班级的第 \(i\) 号桌都坐在同一个位子。
考虑交换两桌不能使答案变优即证。
考试的时候结论都看出来了结果写假了你敢信 qwq。
再来考虑桌子,如果一张桌子的区间被另一桌子的区间覆盖,则这张桌子一定不需要。所以剩下的区间按左端点升序排列后,右端点亦为升序。则若第 \(i_1\) 桌选用 \(j_1\) 号桌子,第 \(i_2\) 桌选用 \(j_2\) 号桌子,就会有 \(i_1<i_2\Leftrightarrow j_1\le j_2\) 成立。所以直接决策单调性分治优化求解即可。复杂度 \(\mathcal O(nm+k\log k\log n)\)。
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
#include <vector>
#include <cassert>
#include <algorithm>
#define rep( i, l, r ) for ( int i = l, repEnd##i = r; i <= repEnd##i; ++i )
#define per( i, r, l ) for ( int i = r, repEnd##i = l; i >= repEnd##i; --i )
typedef long long LL;
typedef std::pair<int, int> PII;
#define fi first
#define se second
inline int rint() {
int x = 0, s = getchar();
for ( ; s < '0' || '9' < s; s = getchar() );
for ( ; '0' <= s && s <= '9'; s = getchar() ) x = x * 10 + ( s ^ '0' );
return x;
}
const int MAXN = 2e5;
int n, m, c, h[MAXN * 2 + 5];
LL pre[MAXN * 2 + 5], suf[MAXN * 2 + 5];
PII desk[MAXN + 5];
std::vector<int> group[MAXN + 5];
inline LL solve( const int gl, const int gr, const int dl, const int dr ) {
if ( gl > gr ) return 0;
int gm = gl + gr >> 1, dm = -1, sz = ( m << 1 ) - 1;
std::vector<int>& curG = group[gm];
std::sort( curG.begin(), curG.end() );
rep ( i, 0, sz ) pre[i] = ( i ? pre[i - 1] : 0 ) + curG[i];
per ( i, sz, 0 ) suf[i] = suf[i + 1] + curG[i];
LL res = 1ll << 60;
rep ( i, dl, dr ) {
int l = desk[i].fi, r = desk[i].se;
int cl = std::lower_bound( curG.begin(),
curG.end(), l ) - curG.begin();
int cr = std::upper_bound( curG.begin(),
curG.end(), r ) - curG.begin() - 1;
LL cost = 1ll * l * cl - ( cl ? pre[cl - 1] : 0 )
+ suf[cr + 1] - 1ll * r * ( sz - cr );
if ( cost < res ) res = cost, dm = i;
}
return res + solve( gl, gm - 1, dl, dm ) + solve( gm + 1, gr, dm, dr );
}
int main() {
// freopen( "desk.in", "r", stdin );
// freopen( "desk.out", "w", stdout );
m = rint(), n = rint(), c = rint();
rep ( i, 1, c ) desk[i].fi = rint(), desk[i].se = rint();
std::sort( desk + 1, desk + c + 1 );
int idx = 0;
rep ( i, 1, c ) {
desk[idx += desk[i].fi != desk[i - 1].fi] = desk[i];
}
c = idx;
rep ( i, 1, m ) {
rep ( j, 1, n << 1 ) h[j] = rint();
std::sort( h + 1, h + ( n << 1 | 1 ) );
rep ( j, 1, n << 1 ) group[j + 1 >> 1].push_back( h[j] );
}
printf( "%lld\n", solve( 1, n, 1, c ) );
return 0;
}
Solution -「ROI 2019」「LOJ #3192」课桌的更多相关文章
- LOJ#3054. 「HNOI 2019」鱼
LOJ#3054. 「HNOI 2019」鱼 https://loj.ac/problem/3054 题意 平面上有n个点,问能组成几个六个点的鱼.(n<=1000) 分析 鱼题,劲啊. 容易想 ...
- 【LOJ】#3036. 「JOISC 2019 Day3」指定城市
LOJ#3036. 「JOISC 2019 Day3」指定城市 一个点的可以dp出来 两个点也可以dp出来 后面的就是在两个点的情况下选一条最长的链加进去,用线段树维护即可 #include < ...
- 【LOJ】#3034. 「JOISC 2019 Day2」两道料理
LOJ#3034. 「JOISC 2019 Day2」两道料理 找出最大的\(y_{i}\)使得\(sumA_{i} + sumB_{y_i} \leq S_{i}\) 和最大的\(x_{j}\)使得 ...
- 【LOJ】#3032. 「JOISC 2019 Day1」馕
LOJ#3032. 「JOISC 2019 Day1」馕 处理出每个人把馕切成N段,每一段快乐度相同,我们选择第一个排在最前的人分给他的第一段,然后再在未选取的的人中选一个第二个排在最前的切一下,并把 ...
- 【LOJ】#3033. 「JOISC 2019 Day2」两个天线
LOJ#3033. 「JOISC 2019 Day2」两个天线 用后面的天线更新前面的天线,线段树上存历史版本的最大值 也就是线段树需要维护历史版本的最大值,后面的天线的标记中最大的那个和最小的那个, ...
- 【LOJ】#3031. 「JOISC 2019 Day1」聚会
LOJ#3031. 「JOISC 2019 Day1」聚会 听说随机可过? 我想了很久想了一个不会被卡的做法,建出前\(u - 1\)个点的虚树,然后找第\(u\)个点的插入位置,就是每次找一条最长链 ...
- 【LOJ】#3030. 「JOISC 2019 Day1」考试
LOJ#3030. 「JOISC 2019 Day1」考试 看起来求一个奇怪图形(两条和坐标轴平行的线被切掉了一个角)内包括的点个数 too naive! 首先熟练的转化求不被这个图形包含的个数 -- ...
- 【LOJ】#3014. 「JOI 2019 Final」独特的城市(长链剖分)
LOJ#3014. 「JOI 2019 Final」独特的城市(长链剖分) 显然我们画一条直径,容易发现被统计的只可能是直径某个距离较远的端点到这个点的路径上的值 用一个栈统计可以被统计的点,然后我们 ...
- Solution -「CTS 2019」「洛谷 P5404」氪金手游
\(\mathcal{Description}\) Link. 有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...
随机推荐
- let var const 区别
let es6 语法 let是作用域是块级的,即{}内的范围 如果未声明变量就使用的话,报错ReferenceError,而var则会报错undefined(不存在变量提升) 只要块级作用域内存在le ...
- [Win32] UAC用户账户控制 (提权)
最近写程序时遇到一个问题,就是当一个程序需要管理员权限才能正常运行该怎么办? 通过查阅多方资料,我总结出来几个比较实用的办法(每种办法实现方法不同,同时功能上也有一些小小的差异) 方法一(批处理脚本) ...
- 第10组 Beta冲刺 (2/5)
1.1基本情况 ·队名:今晚不睡觉 ·组长博客:https://www.cnblogs.com/cpandbb/p/14015412.html ·作业博客:https://edu.cnblogs.co ...
- vscode 前端好用插件汇总
本篇文章根据实际开发中使用的扩展插件,结合<精选!15 个必备的 VSCode 插件(前端类)>.<vscode 插件推荐 - 献给所有前端工程师(2017.8.18更新)>中 ...
- 使用Python 爬取 京东 ,淘宝。 商品详情页的数据。(避开了反爬虫机制)
以下是爬取京东商品详情的Python3代码,以excel存放链接的方式批量爬取.excel如下 代码如下 from selenium import webdriver from lxml import ...
- 如何向内核提交补丁?——FirstKernelPatch
参考 https://kernelnewbies.org/FirstKernelPatch
- 文件上传之结合phpinfo与本地文件包含利用
背景 某站点存在本地文件包含及phpinfo,可以利用其执行脚本. 原理 原理: 利用php post上传文件产生临时文件,phpinfo()读临时文件的路径和名字,本地包含漏洞生成1句话后门 1.p ...
- VUE3 之 全局组件与局部组件
1. 概述 老话说的好:忍耐是一种策略,同时也是一种性格磨炼. 言归正传,今天我们来聊聊 VUE 的全局组件与局部组件. 2. 全局组件 2.1 不使用组件的写法 <body> < ...
- YC-Framework版本更新:V1.0.5
分布式微服务框架:YC-Framework版本更新V1.0.5!!! 本次版本V1.0.5更新 所有模块依赖调整: 部分问题修复: Nacos模块化: Eureka模块化: 支持SOA(即WebSer ...
- 【记录一个问题】android ndk中不支持pthread_yield()
如题 使用这个函数报如下错误: error: use of undeclared identifier 'pthread_yield' pthread_yield(); 不得已,使用usleep(50 ...