【笔记】初探KNN算法(2)
KNN算法(2)
机器学习算法封装
scikit-learn中的机器学习算法封装
在python chame中将算法写好
import numpy as np
from math import sqrt
from collections import Counter
def kNN_classify(k, X_train, y_train , x):
assert 1 <= k <= X_train.shape[0],"k must be valid"
assert X_train.shape[0] == y_train.shape[0], \
"the size of X_train must equal to the size of y_train"
assert X_train.shape[1] == x.shape[0], \
"the feature number of x must be equal to X_train"
distances = [sqrt(np.sum((x_train - x)**2)) for x_train in X_train]
nearest = np.argsort(distances)
topK_y = [y_train[i] for i in nearest[:k]]
votes = Counter(topK_y)
return votes.most_common(1)[0][0]
将所需要的数据提前准备好
使用魔法命令%run调用函数
%run KNN.py
执行即可得到预测结果
k近邻算法是非常特殊的,可以被认为是没有模型的算法,为了和其他的算法统一,可以认为训练数据集就是魔性本身
使用scikit-learn中的kNN
需要调用KNeighborsClassifier类
创建实例,其中n_neighbors=6相当于k=6
然后进行fit操作
kNN_classifier.fit(X_train,y_train)
其返回值就是自身,可以不用接参数
调用predict方法即可实现
不过需要注意的是,这个必须是一个矩阵,不能是一维数组
因此我们先reshape改变结构
最后就可以得到预测的类别
重新整理我们的kNN代码
在同一个文件夹下创建一个kNN1.py的文件
写入KNN算法
import numpy as np
from math import sqrt
from collections import Counter
class KNNClassifier:
def __init__(self, k):
"""初始化KNN分类器"""
assert k >= 1, "k must be valid"
self.k = k
self._X_train = None
self._y_train = None
def fit(self, X_train, y_train):
"""根据训练数据集X_train和y_train训练kNN分类器"""
assert X_train.shape[0] == y_train.shape[0], \
"this size of X_train must be equal to the size of y_train"
assert self.k <= X_train.shape[0], \
"the size of X_train must be at least k."
self._X_train = X_train
self._y_train = y_train
return self
def predict(self, X_predict):
"""给定预测数据集X_predict,返回表示X_predict的结果向量"""
assert self._X_train is not None and self._y_train is not None, \
"must fit before predict!"
assert X_predict.shape[1] == self._X_train.shape[1], \
"the feature number of X_predict must be equal to X_train"
y_predict = [self._predict(x) for x in X_predict]
return np.array(y_predict)
def _predict(self, x):
"""给定单个待预测数据x,返回x的预测结果值"""
assert x.shape[0] == self._X_train.shape[1], \
"the feature number of x must be equal to X_train"
distances = [sqrt(np.sum((x_train - x) ** 2))
for x_train in self._X_train]
nearest = np.argsort(distances)
topK_y = [self._y_train[i] for i in nearest[:self.k]]
votes = Counter(topK_y)
return votes.most_common(1)[0][0]
def __repr__(self):
return "KNN(k=%d)" % self.k
同上操作,即可得到
【笔记】初探KNN算法(2)的更多相关文章
- 【笔记】初探KNN算法(3)
KNN算法(3) 测试算法的目的就是为了帮助我们选择一个更好的模型 训练数据集,测试数据集方面 一般来说,我们训练得到的模型直接在真实的环境中使用 这就导致了一些问题 如果模型很差,未经改进就应用在现 ...
- 【笔记】初探KNN算法(1)
KNN算法(1) 全称是K Nearest Neighbors k近邻算法: 思想简单 需要的数学知识很少 效果不错 可以解释机器学习算法使用过程中的很多细节问题 更加完整的刻画机器学习应用的流程 其 ...
- 机器学习实战(笔记)------------KNN算法
1.KNN算法 KNN算法即K-临近算法,采用测量不同特征值之间的距离的方法进行分类. 以二维情况举例: 假设一条样本含有两个特征.将这两种特征进行数值化,我们就可以假设这两种特种分别 ...
- 机器学习笔记(5) KNN算法
这篇其实应该作为机器学习的第一篇笔记的,但是在刚开始学习的时候,我还没有用博客记录笔记的打算.所以也就想到哪写到哪了. 你在网上搜索机器学习系列文章的话,大部分都是以KNN(k nearest nei ...
- kNN算法笔记
kNN算法笔记 标签(空格分隔): 机器学习 kNN是什么 kNN算法是k-NearestNeighbor算法,也就是k邻近算法.是监督学习的一种.所谓监督学习就是有训练数据,训练数据有label标好 ...
- 机器学习笔记--KNN算法2-实战部分
本文申明:本系列的所有实验数据都是来自[美]Peter Harrington 写的<Machine Learning in Action>这本书,侵删. 一案例导入:玛利亚小姐最近寂寞了, ...
- 机器学习笔记--KNN算法1
前言 Hello ,everyone. 我是小花.大四毕业,留在学校有点事情,就在这里和大家吹吹我们的狐朋狗友算法---KNN算法,为什么叫狐朋狗友算法呢,在这里我先卖个关子,且听我慢慢道来. 一 K ...
- 算法学习笔记:knn理论介绍
阅读对象:了解指示函数,了解训练集.测试集的概念. 1.简介 knn算法是监督学习中分类方法的一种.所谓监督学习与非监督学习,是指训练数据是否有标注类别,若有则为监督学习,若否则为非监督学习.所谓K近 ...
- 机器学习简要笔记(三)-KNN算法
#coding:utf-8 import numpy as np import operator def classify(intX,dataSet,labels,k): ''' KNN算法 ''' ...
随机推荐
- 用阻塞队列实现一个生产者消费者模型?synchronized和lock有什么区别?
多线程当中的阻塞队列 主要实现类有 ArrayBlockingQueue是一个基于数组结构的有界阻塞队列,此队列按FIFO原则对元素进行排序 LinkedBlockingQueue是一个基于链表结构的 ...
- gitlab找回管理员密码
1.登陆后台服务器,切换git用户 su - git 2.登录GitLab的Rails控制台 gitlab-rails console production 另一种 切换root账户 执行: git ...
- vsftpd配置 (转)
# # The default compiled in settings are fairly paranoid. This sample file # loosens things up a b ...
- C预处理跨平台
#include <stdio.h> //不同的平台下引入不同的头文件 #if _WIN32 //识别windows平台 #include <windows.h> #elif ...
- 如何用css画一个彩虹---v客学院技术分享
无意间看到了CSS radial-gradient() 函数实现了如下图的样式 仔细一看还真有点像灯光下的鸡蛋,O(∩_∩)O哈哈~ 今天我就来用radial-gradient()函数教大家画一个简单 ...
- 给你的Mac 整个好用的命令行iTerm2 + zsh + oh-my-zsh + powerlevel10k
给你的Mac 整个好用的命令行iTerm2 + zsh + oh-my-zsh + powerlevel10k 介绍 iTerm2 是一个MacOS 下的终端模拟器,和其他的终端本质上没啥大不同.但相 ...
- ZYNQ FLASH+EMMC手动移植LINUX启动
前言 虽可使用Petalinux进行移植,简单方便,但为了更清楚明白的了解整个流程,还是尝试了一波手动移植. 参考资料 ZYNQ Linux 移植:包含petalinux移植和手动移植debian9 ...
- C# CheckedListBox控件的用法总结
1. 添加项目 checkedListBox1.Items.Add("一级"); checkedListBox1.Items.Add("二级"); checke ...
- SDN与OpenFlow架构--初识
一,为什么需要SDN 1,传统网络的缺点: a,传统网络及其设备的只可配置,不可编程,只能按照已定义好的协议处理或转发数据,不能适应需求新变化,不能自主开发新功能. 如购买一个电饭煲,可以煮饭,煲汤. ...
- 笛卡尔树-P2659 美丽的序列
P2659 美丽的序列 tag 笛卡尔树 题意 找出一个序列的所有子段中子段长度乘段内元素最小值的最大值. 思路 我们需要找出所有子段中贡献最大的,并且一个子段的贡献为其长度乘区间最小值. 这--不就 ...