C++基于armadillo im2col的实现
最近学习CNN,需要用到im2col这个函数,无奈网上没有多少使用armadillo的例子,而且armadillo库中似乎也没有这个函数,因此自己写了。
im2col的原理网上一大把,我懒得写了。
1. field<某类>
field<class oT> 是armadillo库中的类,类似于矩阵, 不过这个“矩阵”的每一个元素都是向量或者矩阵。因此用field可以作为四维输入数据使用。
2. 矩阵展开
这个其实还挺简单,使用reshape函数将矩阵变形。不过,armadillo中变形是按照竖向变形的。比如:
1 2 3
4 5 6
7 8 9
这样的矩阵变形成1×9的向量的话:
1 4 7 2 5 8 3 6 9
会成这样。。。
但是也不影响,滤波器也是这么变得,相对位置没变呗。。
3. 排列组合
鄙人才疏学浅,只会用一堆for循环来排列组合。。。貌似没找到更好的办法。
4. 其他细节
像是步数、填充什么的,多注意一下就行了。
5. 实现代码
mat im2col(field<mat> input_data, int filter_h, int filter_w, int stride, int pad)
{
int N, C, H, W;
N = input_data.n_rows;
C = input_data.n_cols;
H = input_data(0, 0).n_rows;
W = input_data(0, 0).n_cols;
int out_h = (H + 2 * pad - filter_h) / stride + 1;
int out_w = (W + 2 * pad - filter_w) / stride + 1;
field<mat> img = input_data;
img.for_each([H, W, pad](mat& X) {X.insert_rows(0, pad); X.insert_rows(H + pad, pad); X.insert_cols(0, pad); X.insert_cols(W + pad, pad); });
mat col(out_h * out_w * N, C * filter_h * filter_w, fill::zeros);
for (int n = 0, z = 0; n < N; n++)
{
for (int i = 0; i < out_h; i++)
{
for (int j = 0; j < out_w; j++, z++)
{
for (int k = 0; k < C; k++)
{
mat filter(filter_h, filter_w, fill::zeros);
filter = input_data(n, k)(span(i * stride, i * stride + filter_h - 1), span(j * stride, j * stride + filter_w - 1));
filter.reshape(1, filter_h * filter_w);
int x = z;
int y0 = filter_h * filter_w * k;
int y1 = filter_h * filter_w * k + filter_h * filter_w - 1;
col(span(x, x), span(y0, y1)) = filter;
}
}
}
}
return col;
}
头文件就是声明和引用。
C++基于armadillo im2col的实现的更多相关文章
- C++基于文件流和armadillo读取mnist
发现网上大把都是用python读取mnist的,用C++大都是用opencv读取的,但我不怎么用opencv,因此自己摸索了个使用文件流读取mnist的方法,armadillo仅作为储存矩阵的一种方式 ...
- 算法库:blas, lapack, cblas, clapack, armadillo, openblas, mkl关系
关于blas的介绍介绍见:http://www.cnblogs.com/dzyBK/p/4983953.html blas:提供向量和矩阵的基本运算,用fortran编写. lapack:提供向量和矩 ...
- 基于CPU版本的Caffe推理框架
最近一段时间,认真研究了一下caffe.但是,里面内容过多,集合了CPU版本和GPU版本的代码,导致阅读起来有些复杂.因此,特意对caffe代码进行了重构,搭建一个基于CPU版本的Caffe推理框架. ...
- 深度学习基础-基于Numpy的卷积神经网络(CNN)实现
本文是深度学习入门: 基于Python的实现.神经网络与深度学习(NNDL)以及动手学深度学习的读书笔记.本文将介绍基于Numpy的卷积神经网络(Convolutional Networks,CNN) ...
- 最近帮客户实施的基于SQL Server AlwaysOn跨机房切换项目
最近帮客户实施的基于SQL Server AlwaysOn跨机房切换项目 最近一个来自重庆的客户找到走起君,客户的业务是做移动互联网支付,是微信支付收单渠道合作伙伴,数据库里存储的是支付流水和交易流水 ...
- 自定义基于 VLC 的视频播放器
前言(蛋疼的背景故事) 前段时间,接了一个小项目,有个需求是要在系统待机一段时间以后,循环播放 MV(类似于 Windows 系统的屏幕保护). 听到这个需求,我首先想到的是 MediaPlayer ...
- 构建一个基本的前端自动化开发环境 —— 基于 Gulp 的前端集成解决方案(四)
通过前面几节的准备工作,对于 npm / node / gulp 应该已经有了基本的认识,本节主要介绍如何构建一个基本的前端自动化开发环境. 下面将逐步构建一个可以自动编译 sass 文件.压缩 ja ...
- 常用 Gulp 插件汇总 —— 基于 Gulp 的前端集成解决方案(三)
前两篇文章讨论了 Gulp 的安装部署及基本概念,借助于 Gulp 强大的 插件生态 可以完成很多常见的和不常见的任务.本文主要汇总常用的 Gulp 插件及其基本使用,需要读者对 Gulp 有一个基本 ...
- 基于spring注解AOP的异常处理
一.前言 项目刚刚开发的时候,并没有做好充足的准备.开发到一定程度的时候才会想到还有一些问题没有解决.就比如今天我要说的一个问题:异常的处理.写程序的时候一般都会通过try...catch...fin ...
随机推荐
- C#异步编程由浅入深(一)
一.什么算异步? 广义来讲,两个工作流能同时进行就算异步,例如,CPU与外设之间的工作流就是异步的.在面向服务的系统中,各个子系统之间通信一般都是异步的,例如,订单系统与支付系统之间的通信是异步的 ...
- oCPC中转化率模型与校准
翻看日历时间已经来到了2021年,也是共同战役的第二年,许久没有更新文章了,在与懒惰进行过几次斗争都失利之后,今天拿出打工人最后的倔强,终于收获了一场胜利.闲话不多说,今天咱们重点聊聊oCPC中转化率 ...
- 学习笔记-ionic3 环境配置搭建到打包
折腾了两周总算理清楚了,参考的链接如下: https://blog.csdn.net/zeternityyt/article/details/79655150 环境配置 https://segmen ...
- [Fundamental of Power Electronics]-PART I-2.稳态变换器原理分析-2.5/2.6 多极点滤波器电压纹波估计及要点小结
2.5 含两极点低通滤波器变换器的输出电压纹波估计 在分析包含两极点低通滤波器的变换器如Cuk变换器及Buck变换器(图2.25)输出时,小纹波近似将会失效.对于这些变换器而言,无论输出滤波电容的值是 ...
- 开源一周岁,MindSpore新特性巨量来袭
摘要:MindSpore很多新特性与大家见面了,无论是在效率提升.易用性,还是创新方面,都是干货满满. 最近,AI计算框架是业界的热点,各大厂商纷纷投身AI框架的自研发,究其原因:AI框架在整个人工智 ...
- ASP.NET Core可视化日志组件使用
前言 今天站长推荐一款日志可视化组件LogDashboard,可以不用安装第三方进程,只需要在项目中安装相应的Nuget包,添加数行代码,就可以实现拥有带Web页面的日志管理面板,十分nice哦. 下 ...
- Java8中的Optional操作
作者:汤圆 个人博客:javalover.cc 前言 官人们好啊,我是汤圆,今天给大家带来的是<Java8中的Optional操作>,希望有所帮助,谢谢 文章纯属原创,个人总结难免有差错, ...
- Day09_44_Set集合_SortedSet01
SortedSet集合 java.util.Set<interface> java.util.SortedSet<interface> 无序不可重复,但是存进去的数据可以按照元 ...
- 一次错误使用 go-cache 导致出现的线上问题
话说一个美滋滋的上午, 突然就出现大量报警, 接口大量请求都响应超时了. 排查过程 查看服务器的监控系统, CPU, 内存, 负载等指标正常 排查日志, 日志能够响应的结果也正常. request.l ...
- 不可不知的CSS小技巧
一.表单部分 1.禁止textarea文本域的缩放 resize:none; 2.去除初始化textarea下拉条 overflow:auto; 3.如何让表单中的选项按钮,点击文字也能选中? < ...