FESTUNG 模型介绍 - 2. 对流问题隐式求解

1. 控制方程

对流问题的控制方程为

\[\partial_t C + \partial_x u^1 C + \partial_y u^2 C = 0, \\
\begin{array}{cl}
C = C_D & \mathrm{on} \; \partial \Omega_D, \\
- \nabla C \cdot \mathbf{v} = g_N & \mathrm{on} \; \partial \Omega_N.
\end{array}
\]

在边界处包含 Dirichlet 和 Neumann 两种边界条件。

2. 数值离散

2.1. 空间离散

采用间断有限元方法对控制方程进行离散,包括采用一次分部积分并利用 Green-Gauss 公式将方程转化为

\[\underbrace{ \int_{\mathcal{T}_k} \varphi_{ki} \sum_{j=1}^N \partial_t C_{kj} \varphi_{kj} }_{I}
- \underbrace{ \int_{\mathcal{T}_k} \partial_x \varphi_{ki} \sum_{j=1}^N C_{kj} \varphi_{kj} \sum_{j=1}^N u^1_{kl} \varphi_{kl}
- \int_{\mathcal{T}_k} \partial_y \varphi_{ki} \sum_{j=1}^N C_{kj} \varphi_{kj} \sum_{j=1}^N u^1_{kl} \varphi_{kl} }_{II} \\
+ \underbrace{ \left \{
\begin{array}{c}
\sum_{n=1}^3 \int_{\partial \mathcal{T}_k} v_{kn}^1 u^1_{kn} \varphi_{ki} \sum_{j=1}^N C_{kj}^* \varphi_{kj}
+ \sum_{n=1}^3 \int_{\partial \mathcal{T}_k} v_{kn}^2 u^2_{kn} \varphi_{ki} \sum_{j=1}^N C_{kj}^* \varphi_{kj} \quad \mathrm{on} \; \mathcal{E}_{\Omega} \\
\sum_{n=1}^3 \int_{\partial \mathcal{T}_k} v_{kn}^1 u^1_{kn} \varphi_{ki} \sum_{j=1}^N C_D^* \varphi_{kj}
+ \sum_{n=1}^3 \int_{\partial \mathcal{T}_k} v_{kn}^2 u^2_{kn} \varphi_{ki} \sum_{j=1}^N C_D^* \varphi_{kj} \quad \mathrm{on} \; \mathcal{E}_{D}
\end{array} \right \}
}_{III} = 0.
\]

代入质量矩阵 \(\mathcal{M}\) 等,可将半离散方程化为矩阵形式

\[\mathcal{M} \partial_t C + \left( \mathcal{G}^1 + \mathcal{G}^2 + \mathcal{R} \right) C = \mathcal{K}_D + \mathcal{K}_N
\]

其中 \(\mathcal{K}_D\) 和 \(\mathcal{K}_N\) 为边界条件产生的常数向量。最终得到关于时间的常微分方程组

\[\partial_t C = \mathcal{S}( C, t ), \quad \mathcal{S}( C, t ) = \mathcal{M}^{-1} \left[ \mathcal{K}_D + \mathcal{K}_N - \left( \mathcal{G}^1 + \mathcal{G}^2 + \mathcal{R} \right) C \right]
\]

2.2. 时间离散

在获得关于时间的半离散方程后,可采用 s 步对角隐式 Runge-Kutta 方法(DIRK)计算,其计算流程为

\[\begin{array}{ll}
\mathbf{C}^{(i)} :=\mathbf{C}^{n}+\Delta t^{n} \sum_{j=1}^{i} a_{i j} \mathcal{S}\left(\mathbf{C}^{(j)}, t^{(j)}\right), & \text { for } \quad i=1, \ldots, s \\
\mathbf{C}^{n+1} :=\mathbf{C}^{n}+\Delta t^{n} \sum_{i=1}^{s} b_{i} \mathcal{S}\left(\mathbf{C}^{(i)}, t^{(i)}\right)
\end{array}
\]

在 DIRK 方法中,\(b_j = a_{sj}\),因此计算时不必进行最后一步 \(\mathbf{C}^{n+1}\) 的计算,而只需把 \(\mathbf{C}^{(s)}\) 值赋给 \(\mathbf{C}^{n+1}\) 即可。

将空间算子表达式代入,可得每一步 \(\mathbf{C}^{(i)}\) 的具体计算公式为

\[\mathbf{C}^{(i)} =\mathbf{C}^{n}+\Delta t^{n} \sum_{j=1}^{i} a_{i j} \mathcal{M}^{-1} \left[ \mathcal{K}_D + \mathcal{K}_N - \left( \mathcal{G}^1 + \mathcal{G}^2 + \mathcal{R} \right) C^{(j)} \right]
\]

将与 \(\mathbf{C}^{(i)}\) 相关的项移到等号左侧可得

\[\left( 1 + \Delta t^n a_{ii} \mathcal{M}^{-1} \mathcal{A} \right) \mathbf{C}^{(i)} = \mathbf{C}^{n} + \Delta t^n a_{ii} \mathcal{M}^{-1} \mathcal{V} + \sum_{j=1}^{i-1} a_{i j} \mathcal{M}^{-1}( \mathcal{V} - \mathcal{A} \mathbf{C}^{(j)} )
\]

其中 \(\mathcal{A} = \mathcal{G}^1 + \mathcal{G}^2 + \mathcal{R}\), \(\mathcal{V} = \mathcal{K}_D + \mathcal{K}_N\)。将 \(\mathcal{M}\) 同时乘以等号两侧,可得

\[\left( \mathcal{M} + \Delta t^n a_{ii} \mathcal{A} \right) \mathbf{C}^{(i)} =
\mathcal{M} \mathbf{C}^{n} + \Delta t^n a_{ii} \mathcal{V} + \sum_{j=1}^{i-1} a_{i j} ( \mathcal{V} - \mathcal{A} \mathbf{C}^{(j)} )
\]

两侧同乘以 \(\left( \mathcal{M} + \Delta t^n a_{ii} \mathcal{A} \right)^{-1}\),即可获得 \(\mathbf{C}^{(i)}\) 的数值解。

3. 模型实现

在 FESTUNG 中,solveSubStep.m 实现了 DIRK 方法中每步 \(\mathbf{C}^{(i)}\) 的计算过程。

首先,组装系数矩阵 sysA 与 sysV,分别代表 \(\mathcal{A}\) 与 \(\mathcal{V}\)。当求解恒定问题时,由于此时半离散方程不包含时间变化项,因此

\[C = \mathcal{A}^{-1} \mathcal{V}
\]

当求解问题为非恒定时,首先计算方程组的右端项 sysR = \(\mathcal{M} \mathbf{C}^{n} + \Delta t^n a_{ii} \mathcal{V} + \sum_{j=1}^{i-1} a_{i j} ( \mathcal{V} - \mathcal{A} \mathbf{C}^{(j)} )\) ,其代码为

% Computing the rhs
sysR = (problemData.tau * problemData.A(nSubStep, nSubStep)) * sysV + problemData.globM * problemData.cDiscRK{1};
for j = 1 : nSubStep - 1
sysR = sysR + (problemData.tau * problemData.A(nSubStep, j)) * problemData.rhsRK{j};
end % for

随后,将系数矩阵的逆左乘至右端项 sysR 上,即可获得 \(\mathbf{C}^{(i)}\) 的数值解

% Compute the next step
problemData.cDiscRK{nSubStep + 1} = (problemData.globM + (problemData.tau * problemData.A(nSubStep, nSubStep)) * sysA) \ sysR;

FESTUNG 模型介绍 — 2. 对流问题隐式求解的更多相关文章

  1. FESTUNG模型介绍—1.对流方程求解

    FESTUNG模型介绍-1.对流方程求解 1. 控制方程 对流问题中,控制方程表达式为 \[\partial_t C + \partial_x (u^1 C) + \partial_y (u^2 C) ...

  2. 大数据技术之_16_Scala学习_06_面向对象编程-高级+隐式转换和隐式值

    第八章 面向对象编程-高级8.1 静态属性和静态方法8.1.1 静态属性-提出问题8.1.2 基本介绍8.1.3 伴生对象的快速入门8.1.4 伴生对象的小结8.1.5 最佳实践-使用伴生对象解决小孩 ...

  3. 12、scala隐式转换与隐式参数

    一.隐式转换 1.介绍 Scala提供的隐式转换和隐式参数功能,是非常有特色的功能.是Java等编程语言所没有的功能.它可以允许你手动指定,将某种类型的对象转换成其他类型的对象. 通过这些功能,可以实 ...

  4. 基于GPS数据建立隐式马尔可夫模型预测目的地

    <Trip destination prediction based on multi-day GPS data>是一篇在2019年,由吉林交通大学团队发表在elsevier期刊上的一篇论 ...

  5. Swift隐式可选型简单介绍

    /* 隐式可选型 */ // 隐式可选型同样可以赋值为nil, 而且在后面对这个变量的使用也可以不用进行解包 var value: String! = nil // print(value) 这行代码 ...

  6. 深入理解 Java 内存模型(一)- 内存模型介绍

    深入理解 Java 内存模型(一)- 内存模型介绍 深入理解 Java 内存模型(二)- happens-before 规则 深入理解 Java 内存模型(三)- volatile 语义 深入理解 J ...

  7. SQL Server 隐式转换引发的躺枪死锁-程序员需知

    在SQL Server的应用开发过程(尤其是二次开发)中可能由于开发人员对表的结构不够了解,造成开发过程中使用了不合理的方式造成数据库引擎未按预定执行,以致影响业务.这是非常值得注意的.这次为大家介绍 ...

  8. Scala的函数,高阶函数,隐式转换

    1.介绍 2.函数值复制给变量 3.案例 在前面的博客中,可以看到这个案例,关于函数的讲解的位置,缺省. 4.简单的匿名函数 5.将函数做为参数传递给另一个函数 6.函数作为输出值 7.类型推断 8. ...

  9. dynamic_cast 和 static_cast 隐式类型转换的区别

    首先回顾一下C++类型转换: C++类型转换分为:隐式类型转换和显式类型转换 第1部分. 隐式类型转换 又称为“标准转换”,包括以下几种情况:1) 算术转换(Arithmetic conversion ...

随机推荐

  1. 离线状态迁移Anaconda虚拟环境

    离线状态迁移Anaconda虚拟环境 同样是项目需求,需要布署的服务器上的Anaconda安装到了普通账户下 而后续所有的内容都需要通过root账户进行操作,而服务器已经布署,联网比较麻烦 本文提出, ...

  2. 第1次 Beta Scrum Meeting

    本次会议为Beta阶段第1次Scrum Meeting会议 会议概要 会议时间:2021年5月29日 会议地点:「腾讯会议」线上进行 会议时长:0.5小时 会议内容简介:本次会议为Beta阶段第1次会 ...

  3. Maven还停留在导jar包?快来探索Nexus私服的新世界

    写在前面 Maven,学习框架之前我们都会接触到的一个工具,感觉他的定位,似乎就跟git一样,只是方便我们开发?于是自然而然的,很多小猿对于Maven都只是停留在会用的阶段,利用他来构建,打包,引入j ...

  4. 算法:九宫格问题--奇数阶魔方(Magic-Square)

    一.魔方介绍 魔方(这里是简称,也可以叫幻方.魔术矩阵,Magic Square)是 n×n 正方形网格(n 为每侧的单元数),里面每个单元格填充了不同的正整数 1, 2, 3, ... , n2,并 ...

  5. c++继承关系中成员函数的重载、重写、重定义之间的区别

    1.Override.Overload.Redefine Overload 重载只能发生在类内部,不能发生在子类和父类的继承中.具体来说,如果子类中有父类同名.同返回值类型,但是不同参数列表,这两个在 ...

  6. SpringCloud微服务实战——搭建企业级开发框架(十):使用Nacos分布式配置中心

    随着业务的发展.微服务架构的升级,服务的数量.程序的配置日益增多(各种微服务.各种服务器地址.各种参数),传统的配置文件方式和数据库的方式已无法满足开发人员对配置管理的要求: 安全性:配置跟随源代码保 ...

  7. WPF进阶技巧和实战03-控件(3-文本控件及列表控件)

    系列文章链接 WPF进阶技巧和实战01-小技巧 WPF进阶技巧和实战02-布局 WPF进阶技巧和实战03-控件(1-控件及内容控件) WPF进阶技巧和实战03-控件(2-特殊容器) WPF进阶技巧和实 ...

  8. Linux ps -ef 命令输出解释

    UID: 程序拥有者PID:程序的 IDPPID:程序父级程序的 IDC:  CPU 使用的百分比STIME: 程序的启动时间TTY: 登录终端TIME : 程序使用掉 CPU 的时间CMD: 下达的 ...

  9. kvm 安装 windows 虚拟机

    作者:SRE运维博客 博客地址: https://www.cnsre.cn/ 文章地址:https://www.cnsre.cn/posts/211108848062/ 相关话题:https://ww ...

  10. (原创)WinForm中莫名其妙的小BUG——ComboBox 尺寸高度问题

    一.前言 使用WinForm很久了,多多少少遇到一些小BUG. 这些小BUG影响并不严重,而且只要稍微设置一下就能正常使用,所以微软也一直没有修复这些小BUG. 本来并不足以写篇文章去记录,但是昨天遇 ...