思路

统计数的种类数,也等价于统计有多少个数满足其之前没有与其相同的数

将序列以$\frac{k}{2}$为块大小分块,那么即会有$m=\frac{2n}{k}$个块

(关于$k=1$的情况,以1为块大小分块即可,具体可以自行代入检验)

考虑$\forall 1\le i<j\le m$,将第$i$个块的数和第$j$个块中的数依次加入$S$中(然后清空),那么一个数有贡献当且仅当其每一次加入时$S$中都没有与其相同的数

另外,每一个块内部只要其被操作即会考虑,注意特判$m=1$时(此时必然是$n=k=1$)

考虑这样的询问次数,不难得到即为$k{m\choose 2}\approx\frac{2n^{2}}{k}$,显然无法通过

优化1

考虑优化,对于$1\le i<j<k\le m$,操作完第$i$个块和第$j$个块后可以不清空,直接操作第$j$个块和第$k$个块,这样只需要加入第$k$个块中的数即可,那么次数也即从$k$变为了$\frac{k}{2}$

具体的,可以看作一张$m$个点的单向完全图(即仅有$i<j$时满足$(i,j)\in E$),将所有的边划分为若干条链(不允许重复,重复不妨拆成两条链),最终询问次数即为$\frac{k}{2}{m\choose 2}+\frac{k}{2}$链数(长度非0)

关于如何划分,考虑枚举$d=j-i$,并将这类边按以下方式划分
$$
1-(d+1)-(2d+1)-...\\2-(d+2)-(2d+2)-...\\......\\d-2d-3d-...
$$
考虑链数,对$d$的值分类讨论:

1.若$d\le \frac{m}{2}$,显然只有$d$条链

2.若$d>\frac{m}{2}$,注意到若起点大于$m-d$,那么长度为0,因此也只有$m-d$条链

综上,链数即为$\sum_{d=1}^{\frac{m}{2}}d+\sum_{d=\frac{m}{2}+1}^{m}(m-d)=\frac{n^{2}}{k^{2}}$,代入可得询问次数约为$\frac{3n^{2}}{2k}$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 2005
4 int n,m,k,ans,st[N],ed[N],vis[N];
5 char s[1];
6 void clear(){
7 printf("R\n");
8 fflush(stdout);
9 }
10 void add(int x){
11 printf("? %d\n",x);
12 fflush(stdout);
13 scanf("%s",s);
14 if (s[0]=='Y')vis[x]=1;
15 }
16 void write(int x){
17 printf("! %d\n",x);
18 fflush(stdout);
19 }
20 int main(){
21 scanf("%d%d",&n,&k);
22 k=max(k/2,1),m=n/k;
23 if (m==1){
24 write(1);
25 return 0;
26 }
27 for(int i=1;i<=m;i++)st[i]=(i-1)*k+1,ed[i]=i*k;
28 for(int i=1;i<=m/2;i++)
29 for(int j=1;j<=i;j++){
30 clear();
31 for(int k=j;k<=m;k+=i)
32 for(int l=st[k];l<=ed[k];l++)add(l);
33 }
34 for(int i=m/2+1;i<=m;i++)
35 for(int j=1;j<=m-i;j++){
36 clear();
37 for(int k=j;k<=m;k+=i)
38 for(int l=st[k];l<=ed[k];l++)add(l);
39 }
40 for(int i=1;i<=n;i++)
41 if (!vis[i])ans++;
42 write(ans);
43 return 0;
44 }

优化2

注意到长度$>\frac{m}{2}$的链至多只有1条,因此$\frac{3n^{2}}{2k}$基本已经达到了下限,还需要新的优化

具体的,考虑在查询时,如果当前数已经确定没有贡献,就不再加入

这样优化的意义并不仅仅是减少了这一次操作,而是整张图并不一定要是DAG,即使出现环也可以保证每一种数恰好产生一个贡献(即保留一个)

此时,图即变成了无向图(每一条边可以任意定向),将$m$个点的无向完全图划分为$\frac{m}{2}$条路径($m$为偶数)是一个经典的问题,具体方式即
$$
1-m-2-(m-1)-3-...-(\frac{m}{2}+1)\\2-1-3-m-4-...-(\frac{m}{2}+2)\\......\\\frac{m}{2}-(\frac{m}{2}-1)-(\frac{m}{2}+1)-(\frac{m}{2}-2)-(\frac{m}{2}+2)-...-m
$$
关于正确性,感性理解即将这$m$个点按$1,2,...,m$顺时针排列,每一次即将上一次的路径顺时针旋转一格,那么每一条边都恰好旋转了一圈,即遍历了逆时针方向该跨度的所有边

综上,链数即为$\frac{m}{2}$,代入可得询问次数为$\frac{n^{2}}{k}$($\frac{mk}{4}$恰和前者${m\choose 2}$估计为$m^{2}$的误差抵消),可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 2005
4 int n,m,k,ans,st[N],ed[N],vis[N];
5 char s[1];
6 void clear(){
7 printf("R\n");
8 fflush(stdout);
9 }
10 void add(int x){
11 if (vis[x])return;
12 printf("? %d\n",x);
13 fflush(stdout);
14 scanf("%s",s);
15 if (s[0]=='Y')vis[x]=1;
16 }
17 void write(int x){
18 printf("! %d\n",x);
19 fflush(stdout);
20 }
21 int main(){
22 scanf("%d%d",&n,&k);
23 k=max(k/2,1),m=n/k;
24 if (m==1){
25 write(1);
26 return 0;
27 }
28 for(int i=1;i<=m;i++)st[i]=(i-1)*k+1,ed[i]=i*k;
29 for(int i=1;i<=m/2;i++){
30 clear();
31 int shift=0;
32 for(int j=1;j<=m;j++){
33 int pos=(i+shift+m-1)%m+1;
34 for(int k=st[pos];k<=ed[pos];k++)add(k);
35 if (j&1)shift++;
36 shift=-shift;
37 }
38 }
39 for(int i=1;i<=n;i++)
40 if (!vis[i])ans++;
41 write(ans);
42 return 0;
43 }

[cf1290D]Coffee Varieties的更多相关文章

  1. Codeforces Round #616 Coffee Varieties

    题意 不太容易讲清,看英文吧 codeforces 做法 先从简单的看起 将块以\(\frac{k}{2}\)个元素为界,然后类似线段树一样递归下去,每次一层的左子树跟右子树的块相互暴力比较 \[\b ...

  2. Codeforces 1290D - Coffee Varieties(分块暴力+完全图的链覆盖)

    Easy version:Codeforces 题面传送门 & 洛谷题面传送门 Hard version:Codeforces 题面传送门 & 洛谷题面传送门 发现自己交互题烂得跟 s ...

  3. 支付宝WAP支付接口开发(Node/Coffee语言)

    此博客不更新很久了, 更新的文档在这, 有兴趣到这里围观: http://neutra.github.io/2013/%E6%94%AF%E4%BB%98%E5%AE%9DWAP%E6%94%AF%E ...

  4. nssm在windows服务器上部署nodejs,coffee启动方式

    本想用forever / pm2 来部署nodejs, 百度后发现只能在Linux系统上使用,window上没法使用,兜一圈后又转nssm了.... 在Linux上,可以轻松的使用forever或者p ...

  5. Coffee Script 笔记 1

    安装node 虽然官网提供了单文件bin的版本 但是并不知道怎么安装npm 于是乎还是得安装msi  (坑 当使用 coffee -w -c . 监视文件改变 即时编译的时候会 提示 Error: T ...

  6. 【Mood-20】滴滤咖啡做法 IT工程师加班必备 更健康的coffee 项目经理加班密鉴

    Drip Coffee

  7. HER COFFEE夜场代金券【1折】_北京美食团购_360团购导航

    HER COFFEE夜场代金券[1折]_北京美食团购_360团购导航 HER COFFEE夜场代金券

  8. Coffee

    Coffee 从接触Spring 到现在已经差不多2年多了,期间用它做过几个项目,从个人使用角度来说,Spring无疑是非常的成熟和方便的,但是知道怎么用,却不知道原理是码农和攻城师的区别,现在准备自 ...

  9. B. Karen and Coffee

    B. Karen and Coffee time limit per test 2.5 seconds memory limit per test 512 megabytes input standa ...

随机推荐

  1. MySQL8 根据某属性查询字段排名由自定义变量到rank()的变动

    在mysql8 之前的版本,因为没有rank()方法的存在,所以在对字段进行排名时,使用的是自定义自变量的方法,比如: select id,name,@rank=@rank+1 as ranks fr ...

  2. 题解「BZOJ4310」跳蚤

    题目传送门 Description 现在有一个长度为 \(n\) 的字符串,将其划分为 \(k\) 段,使得这 \(k\) 段每一段的字典序最大子串中字典序最大的字符串字典序尽量小.求出这个字符串. ...

  3. python收集参数与解包

    收集任意数量的实参 def make_pizza(*toppings): """打印顾客点的所有配料""" print(toppings) ...

  4. 【UE4 C++】 启动 / 关闭外部exe、开启虚拟键盘

    启动/关闭外部exe 引擎自带 FPlatformProcess::CreateProc() FPlatformProcess::TerminateProc() windows api ShellEx ...

  5. NOIP模拟83(多校16)

    前言 CSP之后第一次模拟赛,感觉考的一般. 不得不吐槽多校联测 OJ 上的评测机是真的慢... T1 树上的数 解题思路 感觉自己思维有些固化了,一看题目就感觉是线段树. 考完之后才想起来这玩意直接 ...

  6. Mac 系统如何利用软链接在根目录创建文件夹?

    作者:泥瓦匠 出处:https://www.bysocket.com/2021-10-26/mac-create-files-from-the-root-directory.html Mac 操作系统 ...

  7. 用cmd命令行创建vue项目模板

    1.进入cmd命令行 输入存放项目的位置 2.通过vue create 项目名称 创建项目 3.选择Manually select features 4.通过空格选中第1.2.5.6.7.去掉8 4. ...

  8. 零基础学习C语言入门必备知识

    今天跟大家一起从零学C语言: 1. C语言简介 1.1 C语言发展史 C语言是一种广泛使用的面向过程的计算机程序设计语言,既适合于系统程序设计,又适合于应用程序设计.C语言的发展历程大致如图1-1所示 ...

  9. 单片机STM32在开发中常用库函数详解

    1.GPIO初始化函数 用法: voidGPIO_Configuration(void) { GPIO_InitTypeDefGPIO_InitStructure;//GPIO状态恢复默认参数 GPI ...

  10. PCB设计中新手和老手都适用的七个基本技巧和策略

    本文将讨论新手和老手都适用的七个基本(而且重要的)技巧和策略.只要在设计过程中对这些技巧多加注意,就能减少设计回炉次数.设计时间和总体诊断难点. 技巧一:注重研究制造方法和代工厂化学处理过程 在这个无 ...