计算一对逆序对的贡献,即在n个数期望要删多少步才能删掉其中的两个数,设f(n)表示此时的期望,则有方程$f[n]=3/4+(\sum_{i=2}^{n}f[i]\cdot c(n-2,i-2))/2^n$,手算(打表)得到f[i]=4/3(代入成立),因此$ans=\sum_{i=1}^{n}(i-1)i/3=1/3(n(n+1)(2n+1)/6-n(n+1)/2)=(n-1)(n+1)/9$

1 #include<bits/stdc++.h>
2 using namespace std;
3 int n;
4 int main(){
5 while (scanf("%d",&n)!=EOF)printf("%d\n",443664157LL*(n-1)*(n+1)%998244353);
6 }

[hdu6595]Everything Is Generated In Equal Probability的更多相关文章

  1. HDU 6595 Everything Is Generated In Equal Probability (期望dp,线性推导)

    Everything Is Generated In Equal Probability \[ Time Limit: 1000 ms\quad Memory Limit: 131072 kB \] ...

  2. HDU-多校2-Everything Is Generated In Equal Probability(公式+逆元)

    Problem Description One day, Y_UME got an integer N and an interesting program which is shown below: ...

  3. hdu多校第二场 1005 (hdu6595) Everything Is Generated In Equal Probability

    题意: 给定一个N,随机从[1,N]里产生一个n,然后随机产生一个n个数的全排列,求出n的逆序数对的数量,加到cnt里,然后随机地取出这个全排列中的一个非连续子序列(注意这个子序列可以是原序列),再求 ...

  4. 【HDOJ6595】Everything Is Generated In Equal Probability(期望DP)

    题意:给定一个N,随机从[1,N]里产生一个n, 然后随机产生一个n个数的全排列,求出n的逆序数对的数量并累加ans, 然后随机地取出这个全排列中的一个子序列,重复这个过程,直到为空,求ans在模99 ...

  5. ACM的探索之Everything is Generated In Equal Probability! 后序补充丫!

    Problem Desciption: 百度翻译后的汉化: 参见博客:https://www.cnblogs.com/zxcoder/p/11253099.html https://blog.csdn ...

  6. ACM的探索之Everything Is Generated In Equal Probability(这真的是很有趣的话语丫!)

    ---------------------------------------步履不停,奋勇前进! ------------------------难度真的是蛮大丫!后序补充!

  7. 2019DX#2

    Solved Pro.ID Title Ratio(Accepted / Submitted)   1001 Another Chess Problem 8.33%(1/12)   1002 Beau ...

  8. 2019 Multi-University Training Contest 2

    2019 Multi-University Training Contest 2 A. Another Chess Problem B. Beauty Of Unimodal Sequence 题意 ...

  9. HDU校赛 | 2019 Multi-University Training Contest 2

    2019 Multi-University Training Contest 2 http://acm.hdu.edu.cn/contests/contest_show.php?cid=849 100 ...

随机推荐

  1. JVM学习笔记——类加载器与类加载过程

    类加载器与类加载过程 类加载器ClassLoader 类加载器 ClassLoader 用于把 class 文件装载进内存. 启动类加载器(Bootstrap ClassLoader): 这个类加载使 ...

  2. MacOS下Java与JDK关系与相关路径

    MacOS下Java与JDK关系与相关路径 macOS下的Java与JDK的路径曾经困扰过我一段时间,今天稍有些忘记,故记下笔记,整理一下.Java与JDK的关系不在本文笔记之内,Javaer常识. ...

  3. js 手动实现 promise.all的功能

    在中高级面试中,实现一个promise.all是一个频率较高的面试题 首先分析下 promise.all(),(参考MDN) 接收一个promise的iterable类型(注:Array,Map,Se ...

  4. 每日总结:Java基本语法 (2021.9.23)

         对象:对象是类的一个实例,有状态和行为. 类:类是一个模板,它描述一类对象的行为和状态. 方法:方法就是行为,一个类可以有很多方法. 实例变量:每个对象都有独特的实例变量,对象的状态由这些实 ...

  5. SpringBoot入门05-全局配置文件

    springboot全局配置文件作用是设置或修改默认设置 springboot全局配置文件有下面两种方式 application.xml配置文件 示例 server.port=8088 server. ...

  6. python中dump与dumps实现序列化

    前言 使用中如果我们想把python可识别对象的dict类型的数据通过str类型写入文件或者存入变量中就需要用到dump与dumps 详解 dump 1.新建个dict文件,然后将dict文件存入一个 ...

  7. Rvalue References

    Rvalue References

  8. docker内服务访问宿主机服务

    目录 1. 场景 2. 解决 4. 参考 1. 场景 使用windows, wsl2 进行日常开发测试工作. 但是wsl2经常会遇到网络问题.比如今天在测试一个项目,核心功能是将postgres 的数 ...

  9. 【UE4 设计模式】设计模式一些概念

    定义 设计模式是一套被反复使用的.多数人知晓的.经过分类编目的.代码设计经验的总结. 使用设计模式是为了重用代码.让代码更容易被他人理解.保证代码可靠性. 四人帮 GOF ( Gang of Four ...

  10. 第五课第四周笔记4:Transformer Network变压器网络

    Transformer Network变压器网络 你已经了解了 self attention,你已经了解了 multi headed attention.在这个视频中,让我们把它们放在一起来构建一个变 ...