将$f(k)=\sum_{i=0}^{m}a_{i}k^{i}$转换为$f(k)=\sum_{i=0}^{m}b_{i}k^{\underline{i}}$,其中$k^{\underline{i}}=\frac{k!}{(k-i)!}$
题目即求$\sum_{k=0}^{n}c(n,k)x^{k}\sum_{i=0}^{m}b_{i}\cdot k^{\underline{i}}$
调整枚举顺序,即$\sum_{i=0}^{m}b_{i}\sum_{k=0}^{n}c(n,k)x^{k}k^{\underline{i}}$
观察发现$c(n,k)k^{\underline{i}}=\frac{n!}{k!(n-k)!}\frac{k!}{(k-i)!}=\frac{n!}{(k-i)!(n-k)!}=c(n-i,k-i)n^{\underline{i}}$
代入原式,即$\sum_{i=0}^{m}b_{i}n^{\underline{i}}\sum_{k=0}^{n}c(n-i,k-i)x^{k}$
令$k'=k-i$,即$\sum_{i=0}^{m}b_{i}n^{\underline{i}}x^{i}\sum_{k'=0}^{n-i}c(n-i,k')x^{k'}$
观察发现右式即$(x+1)^{n-i}$二项式展开,那么即$\sum_{i=0}^{m}b_{i}n^{\underline{i}}x^{i}(x+1)^{n-i}$
那么问题变为如何求出$b_{i}$,即如何将多项式转换为下降幂多项式【luoguP5383】
根据第二类斯特林数的性质,有$x^{n}=\sum_{i=0}^{n}c(x,i)i!S(n,i)=\sum_{i=0}^{n}S(n,i)x^{\underline{i}}$
那么就有$\sum_{i=0}^{m}a_{i}x^{i}=\sum_{i=0}^{m}a_{i}\sum_{j=0}^{i}S(i,j)x^{\underline{j}}=\sum_{j=0}^{m}x^{\underline{j}}\sum_{i=j}^{m}a_{i}S(i,j)$,即$b_{j}=\sum_{i=j}^{m}a_{i}S(i,j)$
本题由于$m\le 1000$,仅需要根据$S$的递推式暴力求出$S$并$o(m^{2})$计算即可

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 1005
4 int n,x,mod,m,ans,a[N],b[N],s[N][N];
5 int ksm(int n,int m){
6 if (!m)return 1;
7 int s=ksm(n,m>>1);
8 s=1LL*s*s%mod;
9 if (m&1)s=1LL*s*n%mod;
10 return s;
11 }
12 int main(){
13 scanf("%d%d%d%d",&n,&x,&mod,&m);
14 for(int i=0;i<=m;i++)scanf("%d",&a[i]);
15 s[0][0]=1;
16 for(int i=1;i<=m;i++)
17 for(int j=1;j<=i;j++)s[i][j]=(s[i-1][j-1]+1LL*j*s[i-1][j])%mod;
18 for(int i=0;i<=m;i++)
19 for(int j=i;j<=m;j++)b[i]=(b[i]+1LL*a[j]*s[j][i])%mod;
20 int s=1;
21 for(int i=0;i<=m;i++){
22 ans=(ans+1LL*b[i]*s%mod*ksm(x,i)%mod*ksm(x+1,n-i))%mod;
23 s=1LL*s*(n-i)%mod;
24 }
25 printf("%d",ans);
26 }

[loj3300]组合数问题的更多相关文章

  1. LCM性质 + 组合数 - HDU 5407 CRB and Candies

    CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...

  2. 计算一维组合数的java实现

    背景很简单,就是从给定的m个不同的元素中选出n个,输出所有的组合情况! 例如:从1到m的自然数中,选择n(n<=m)个数,有多少种选择的组合,将其输出! 本方案的代码实现逻辑是比较成熟的方案: ...

  3. Noip2016提高组 组合数问题problem

    Day2 T1 题目大意 告诉你组合数公式,其中n!=1*2*3*4*5*...*n:意思是从n个物体取出m个物体的方案数 现给定n.m.k,问在所有i(1<=i<=n),所有j(1< ...

  4. C++单元测试 之 gtest -- 组合数计算.

    本文将介绍如何使用gtest进行单元测试. gtest是google单元测试框架.使用非常方便. 首先,下载gtest (有些google项目包含gtest,如 protobuf),复制目录即可使用. ...

  5. NOIP2011多项式系数[快速幂|组合数|逆元]

    题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...

  6. AC日记——组合数问题 落谷 P2822 noip2016day2T1

    题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...

  7. 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数

    1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...

  8. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

  9. UOJ263 【NOIP2016】组合数问题

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

随机推荐

  1. C#开发BIMFACE系列43 服务端API之图纸拆分

    BIMFACE二次开发系列目录     [已更新最新开发文章,点击查看详细] 在上一篇博客<C#开发BIMFACE系列42 服务端API之图纸对比>的最后留了一个问题,在常规业务场景下,一 ...

  2. bzoj1407,洛谷2421 NOI2002荒岛野人

    题目大意: 克里特岛以野人群居而著称.岛上有排列成环行的M个山洞.这些山洞顺时针编号为1,2,-,M.岛上住着N个野人,一开始依次住在山洞C1,C2,-,CN中,以后每年,第i个野人会沿顺时针向前走P ...

  3. L1-023 输出GPLT (20 分) java题解 GPLT天梯赛防坑技巧

    上题目先 给定一个长度不超过10000的.仅由英文字母构成的字符串.请将字符重新调整顺序,按GPLTGPLT....这样的顺序输出,并忽略其它字符.当然,四种字符(不区分大小写)的个数不一定是一样多的 ...

  4. 多项式(polynomial)

    多项式(polynomial) 题目大意: 给出一个 n 次多项式 \(f(x)=\sum_{i=0}^na_ix^i\) 对于\(k ≤ x ≤ k + l − 1\) 的\(l\) 个\(x\), ...

  5. Linux——Docker安装

    1. 安装Docker i :环境准备:Linux要求内核3.0以上 ii:安装 #1.卸载旧版本 yum remove docker \ docker-client \ docker-client- ...

  6. 使用 z3 进行逆向 解密字符串

    在逆向过程中,我们知道了一个结果值,和一段计算代码.这个时候我们需要知道计算前的值是什么:需要用到 z3 模块来进行解题 z3项目地址 Java代码如下: private String b(Strin ...

  7. Java:volatile笔记

    Java:volatile笔记 本笔记是根据bilibili上 尚硅谷 的课程 Java大厂面试题第二季 而做的笔记 1. volatile 和 JMM 内存模型的可见性 JUC 下的三个包 java ...

  8. NGINX杂谈——flask_limiter的IP获取(怎么拿到真实的客户端IP)

    本篇博客将 flask_limiter 作为切入点,来记录一下自己对 remote_addr 和 proxy_add_x_forwarded_for 两个变量.X-Real-IP 和 X-Forwar ...

  9. 双堆DEAP

    记录一道遇到的考研真题 特性分析: DEAP为一颗完全二叉树,左子树小堆,右子树大堆,故左右子树分别可以用l[].r[]数组存储,用m和n分别表示当前两完全二叉树的结点,左右子树高度差为1,且左子树的 ...

  10. Makefile目标文件搜索(VPATH和vpath

    转载:http://c.biancheng.net/view/7051.html 我们都知道一个工程文件中的源文件有很多,并且存放的位置可能不相同(工程中的文件会被放到不同的目录下),所以按照之前的方 ...