Borgwardt K., Gretton A., Rasch M., Kriegel H., Schoikopf B., Smola A. Integrating structured biological data by Kernel Maximum Mean Discrepancy. 2006.

本文介绍了一种衡量不同数据分布之间一致性的统计量.

主要内容

在统计中, 我们常常需要讨论两组数据是否采样自同一个分布. 一个最常见的问题或许就是, 训练数据和测试数据的偏移, 本文的重点是提出MMD作为一个衡量二者是否采样自同一个数据的指标, 后续的KMM则是其用于处理这种偏移的一种方法.

定义

假设\(\mathcal{F}\)是一类\(f:\mathcal{X} \rightarrow \mathbb{R}\)的函数, 而\(p, q\)分别是两个博雷尔概率分布,即概率空间为\((\mathbb{R}^d, \mathscr{B}(\mathbb{R})^d, p|q)\) . 并令\(X=(x_1, x_2,\ldots, x_m), Y=(y_1, y_2,\ldots, y_n)\)分别独立采样自\(p, q\). 则MMD与经验MMD按照如下方式定义:

\[\mathrm{MMD}[\mathcal{F},p,q] := \sup_{f \in \mathcal{F}} (\mathbb{E}_p [f(x)] - \mathbb{E}_q[f(y)]) \\
\mathrm{MMD}[\mathcal{F},p,q] := \sup_{f \in \mathcal{F}} (\frac{1}{m} \sum_{x \in X} f(x) - \frac{1}{n} \sum_{y\in Y} f(y)). \\
\]

首先, 倘若\(p=q\), 那么显然\(\mathrm{MMD}[\mathcal{F}, p, q]=0\), 但是当\(p \not= q\)的时候, 我们总能找到一些\(f\)令MMD为正. 不过这一性质对于经验MMD就有所不同了, 由于采样个数有限, \(X, Y\)总会有一些不同, 所以这一指标往往永远不为0.

若是要估计上面的式子, 这是非常困难的, 而且某种程度上是没有意义的, 因为一旦找到一个\(f\)使得MMD非零, 我们可以去\(f':=\alpha \cdot f\)使得MMD任意大. 所以第一步便是要限制\(\mathcal{F}\), 很自然的方式是限制其在范数球上\(\|f\| \le 1\), 但这并没有改变困难的本质. 要知道\(p=q\)的一个充分必要条件是

\[\int f \mathrm{d} p = \int f \mathrm{d} q , \forall f \in C.
\]

而所有的连续函数都能由 universal RKHS (reproducing kernel Hilbert space)中的函数来逼近, 故我们完全可以将\(\mathcal{F}\)限制在这样一个空间之上.

MMD for kernel function classes

接下来我们在 universal RKHS \(\mathcal{H}\)上讨论, 该空间通过给定核\(k(\cdot, \cdot)\)来确定, 此时\(\phi_x=k(x, \cdot)\) . 当然你也可以说是先有的\(\phi\), 然后\(k(x, y)=\langle \phi_x, \phi_y \rangle\)也是可以的. 此时, 是假设对于任意的\(x \in \mathcal{X}\)存在\(L_x: f \rightarrow f(x)\), 且\(L_x\)是一个有界线性算子, 根据Riesz表示引理, \(L_x(f)=f(x) = \langle f, \phi_x \rangle_{\mathcal{H}}\), 其中\(\phi_x \in \mathcal{H}\).

回到由\(k(\cdot, \cdot)\)定义的\(\mathcal{H}\)中来, 此时的MMD可以便成了

\[\mathrm{MMD}[\mathcal{H}, p, q] = \sup_{\|f\|_{\mathcal{H}} \le 1} \mathbb{E}_p [f(x)] - \mathbb{E}_q [f(x)]
= \sup_{\|f\|_{\mathcal{H}} \le 1} \mathbb{E}_p [\langle \phi_x, f\rangle_{\mathcal{H}}] - \mathbb{E}_q [\langle \phi_x, f\rangle_{\mathcal{H}}] = \|\mu_p-\mu_q\|_{\mathcal{H}},
\]

其中\(\mu_p=\mathbb{E}_p [\phi_x], \mu_q = \mathbb{E}_q [\phi_x]\).

\(\mathrm{MMD}^2\) 一个无偏统计量

定义

\[\mathrm{MMD}^2 [\mathcal{H}, p, q] = \|\mu_p - \mu_q\|_{\mathcal{H}}^2, \\
\mathrm{MMD}^2 [\mathcal{H}, X, Y] = \frac{1}{m(m-1)}\sum_{i \not = j}k(x_i, x_j) + \frac{1}{n(n-1)}\sum_{i \not = j } k(y_i, y_j) - \frac{2}{mn} \sum_{i,j} k(x_i, y_j).
\]

容易证明\(\mathrm{MMD}^2[\mathcal{H}, X, Y]\)是\(MMD^2[\mathcal{H}, p, q]\)的一个无偏统计量.

当\(m=n\)的时候, 进一步有

\[\mathrm{MMD}^2[\mathcal{H}, X, Y]= \frac{1}{m(m-1)} \sum_{i \not =j} h(z_i, z_j),
\]

其中

\[h(z_i, z_j) := k(x_i, x_j)+ k(y_i, y_j) - k(x_i, y_j) - k(x_j, y_i).
\]

MMD test

通过上述推论便可知我们应该如何检验, 并且具体算法如下.

注: \(\mathrm{Pr}(z > z_{\alpha}) = \alpha \Rightarrow \mathrm{Pr}(-z_{\alpha}<z <z_{\alpha})=1-\alpha\), 又\(\mathrm{erf}(x) = \Phi(\sqrt{2}x) - \Phi(-\sqrt{2}x)\), 所以\(\mathrm{erfinv}(1-2\alpha) = \frac{1}{\sqrt{2}} z_{\alpha}\), 这是算法里那个式子的由来.

MMD的更多相关文章

  1. 【自制插件】将MMD4Mecanim转换的MMD模型导入maya

    这个已经废弃了_(:зゝ∠)_,另外做了升级版: http://www.cnblogs.com/marisa/p/5174150.html ============================== ...

  2. MMD日文乱码解决

    记录一下自己在学习MMD遇到的问题. 日文乱码是很常见的,因为很多MMD资源是日本的. 1.解压乱码 我以好压为例,其他解压软件也是可以通过设置解决的 设置

  3. 在写一点关于MySQL的知识,感觉自己mmd

    DBMS(Database Management System)数据库管理系统  包括有DDL(数据定义语言)和DML(数据操纵语言)以及DCL(数据库控制语言) 数据库设计方法: 1.需求分析阶段 ...

  4. 探索ASP.NET MVC5系列之~~~2.视图篇(上)---包含XSS防御和异步分部视图的处理

    其实任何资料里面的任何知识点都无所谓,都是不重要的,重要的是学习方法,自行摸索的过程(不妥之处欢迎指正) 汇总:http://www.cnblogs.com/dunitian/p/4822808.ht ...

  5. 从Maya中把模型搬运至网页的过程

    虽然利用threejs来在网页中渲染3d模型不是第一次折腾了,但是还是遇到了各种问题.总结下我所遇到的问题,希望能给正在使用threejs的小伙伴一个帮助. 一.所使用的软件与开发环境 Maya201 ...

  6. 在sql server中建存储过程,如果需要参数是一个可变集合怎么处理?

    在sql server中建存储过程,如果需要参数是一个可变集合的处理 原存储过程,@objectIds 为可变参数,比如 110,98,99 ALTER PROC [dbo].[Proc_totalS ...

  7. SparkStreaming实现Exactly-Once语义

    作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 译自:http://blog.cloudera.com/blog/2015/03/exactly ...

  8. lucene+IKAnalyzer实现中文纯文本检索系统

    首先IntelliJ IDEA中搭建Maven项目(web):spring+SpringMVC+Lucene+IKAnalyzer spring+SpringMVC搭建项目可以参考我的博客 整合Luc ...

  9. mysql提供dataprovider

    import java.io.File; import java.io.FileInputStream; import java.io.IOException; import java.io.Inpu ...

随机推荐

  1. linux 实用指令压缩和解压类

    linux 实用指令压缩和解压类 目录 linux 实用指令压缩和解压类 gzip/gunzip指令(不常用) zip/unzip指令 tar指令(常用) gzip/gunzip指令(不常用) 说明 ...

  2. ace

    ace An ace is a playing card, die or domino with a single pip. In the standard French deck, an ace h ...

  3. Java Swing布局管理器GridBagLayout的使用示例 [转]

    GridBagLayout是java里面最重要的布局管理器之一,可以做出很复杂的布局,可以说GridBagLayout是必须要学好的的, GridBagLayout 类是一个灵活的布局管理器,它不要求 ...

  4. MySQL学习(一)——创建新用户、数据库、授权

    一.创建用户 1.登录mysql mysql -u root -p 2.创建本地用户>/font> use mysql; //选择mysql数据库 create user 'test'@' ...

  5. java网站架构设计

    涉及到的技术及工具:java,springmvc,ibatis,freemarker,mysql,mongdb,memcached,ehcache,maven. 一个网站不可能说一开始就是要设计一个能 ...

  6. 记一次单机Nginx调优,效果立竿见影

    一.物理环境 1.系统是Centos 8,系统配置 2核4G,8M带宽,一台很轻的应用服务器. 2.站点部署情况.但站点部署两个实例,占用两个端口,使用nginx 负载转发到这两个web站点.  二. ...

  7. Android 内存泄漏检测工具 LeakCanary(Kotlin版)的实现原理

    LeakCanary 是一个简单方便的内存泄漏检测框架,做 android 的同学基本都收到过 LeakCanary 检测出来的内存泄漏.目前 LeakCanary 最新版本为 2.7 版本,并且采用 ...

  8. shell脚本 检查mysql节点数据一致性

    一.简介 源码地址 日期:2018/4/12 介绍:参考pt checksum思想改写,可以定制化的检查随意两个mysql节点的数据一致性. 功能: 检查随意两个几点的数据一致性 支持并发检查,基于库 ...

  9. MySQL如何把varchar类型字段转换成int类型进行倒叙排序

    SELECT * FROM sheet2 t1 WHERE t1.`金额`+'0' ORDER BY t1.`金额` DESC;

  10. Table.Range保留中间指定的….Range/Middle(Power Query 之 M 语言)

    数据源: "姓名""基数""个人比例""个人缴纳""公司比例""公司缴纳"&qu ...