感觉这个分布的含义很有用啊, 能预测‘最大', 也就是自然灾害, 太牛了.

主要内容

定义

[Gumbel distribution-wiki](Gumbel distribution - Wikipedia)

其分布函数和概率密度函数分别为:

\[F(x; \mu, \beta) = e^{-e^{-(x-\mu)/\beta}}, \quad f(x;\mu,\beta) = \frac{1}{\beta} e^{-[e^{-(x-\mu)/\beta}+(x-\mu) / \beta]}
\]

标准Gumbel分布(即\(\mu=0, \beta=1\)):

\[F(x) = e^{-e^{-x}}, \quad f(x) = e^{-(x+e^{-x})}.
\]

从Gumbel分布中采样, 只需:

\[x = F^{-1}(u) = \mu - \beta \ln (-\ln(u)), \quad u \sim \mathrm{Uniform}(0, 1).
\]

proof:

\[P(F^{-1}(u) \le x) = P(u \le F(x)) = F(x),
\]

故\(F^{-1}(u)\)的分布函数就是\(F(x)\).

\[\mathbb{E} [x] = \mu + \gamma \cdot \beta,
\]

其中 \(\gamma\)是Euler-Mascherorni constant.

Gumbel-Max trick

假设我们有一个离散的分布\([\pi_1, \pi_2, \cdots, \pi_k]\)共\(k\)类, \(\pi_i\)表示为第\(i\)类的概率, 则从该分布中采样\(z\)等价于

\[z = \arg \max_i [g_i + \log \pi_i], \quad g_i \sim \mathrm{Gumbel}(0, 1), \mathrm{i.i.d}.
\]

proof:

\[P(z=i) = P(g_i + \log \pi_i \ge \max \{g_j + \log \pi_j\}_{j\not=i}) = \int_{-\infty}^{+\infty} p(x) P(x+\log \pi_i \ge \{g_j + \log \pi_j\}_{j\not=i}) \mathrm{d}x.
\]

\[P(x+\log \pi_i \ge \{g_j + \log \pi_j\}_{j\not=i}) = \prod_{j\not=i} P(g_j \le x + \log\pi_i - \log \pi_j) = e^{-e^{-x} \cdot \frac{1 - \pi_i}{\pi_i}},
\]

带入计算得:

\[\begin{array}{ll}
P(z=i)
& = \int_{-\infty}^{+\infty} e^{-(x+e^{-x} \cdot \frac{1}{\pi_i})} \mathrm{d}x \\
& = \int_{-\infty}^{+\infty} \pi_i \cdot e^{-[(x-\log\frac{1}{\pi_i})+e^{-(x - \log \frac{1}{\pi_i})}]} \mathrm{d}x \\
& = \pi_i.
\end{array}
\]

Gumbel trick 用于归一化

我们时常会碰到这样的问题:

\[p(x;\theta) = \frac{f(x;\theta)}{Z},
\]

其中\(Z=\sum_{i=1}^K f(x_i;\theta)\) 是归一化常数, 那么怎么计算\(Z\)呢?

构建随机变量\(T\):

\[T = \max_i [\ln f(x_i) + g_i], \quad g_i \sim \mathrm{Gumbel}(-c, 1), \mathrm{i.i.d.}
\]

\[T \sim \mathrm{Gumbel}(-c + \ln Z)
\]

proof:

\[P(T \le t) = P(\max_i [\ln f(x_i) + g_i] \le t) = \prod_{i} P(g_i \le t - \ln f(x_i)) = e^{-e^{-(t+c-\ln Z)}} = F(t;-c+\ln Z ,1).
\]

因为

\[\mathbb{E}[T] = -c + \ln Z + \gamma,
\]

故我们只需估计\(\mathbb{E}[T] \approx \sum_j T_j\) 即可估计\(Z\)

\[Z = \exp (\sum_{j}T_j + c - \gamma).
\]

所以必须要求离散的\(x\)?

代码

[scipy-gumbel](scipy.stats.gumbel_r — SciPy v1.6.3 Reference Guide)

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gumbel_r fig, ax = plt.subplots(1, 1)
# mean, var, skew, kurt = gumbel_r.stats(moments='mvsk')
# print(mean, var, skew, kurt) x = np.linspace(gumbel_r.ppf(0.01), gumbel_r.ppf(0.99), 100)
ax.plot(x, gumbel_r.pdf(x), 'r-', lw=5, alpha=0.6, label="gumbel_r pdf")
r = gumbel_r.rvs(size=1000, loc=0, scale=1)
ax.hist(r, density=True, histtype="stepfilled", alpha=0.2)
ax.legend(loc='best', frameon=False)
plt.show()

Gumbel distribution的更多相关文章

  1. Gumbel-Softmax Trick和Gumbel分布

      之前看MADDPG论文的时候,作者提到在离散的信息交流环境中,使用了Gumbel-Softmax estimator.于是去搜了一下,发现该技巧应用甚广,如深度学习中的各种GAN.强化学习中的A2 ...

  2. (数据科学学习手札03)Python与R在随机数生成上的异同

    随机数的使用是很多算法的关键步骤,例如蒙特卡洛法.遗传算法中的轮盘赌法的过程,因此对于任意一种语言,掌握其各类型随机数生成的方法至关重要,Python与R在随机数底层生成上都依靠梅森旋转(twiste ...

  3. Python中生成随机数

    目录 1. random模块 1.1 设置随机种子 1.2 random模块中的方法 1.3 使用:生成整形随机数 1.3 使用:生成序列随机数 1.4 使用:生成随机实值分布 2. numpy.ra ...

  4. Categorical Reparameterization with Gumbel-Softmax

    目录 概 主要内容 Gumbel distribution Jang E., Gu S. and Poole B. Categorical reparameterization with gumbel ...

  5. 齐夫定律, Zipf's law,Zipfian distribution

    齐夫定律(英语:Zipf's law,IPA英语发音:/ˈzɪf/)是由哈佛大学的语言学家乔治·金斯利·齐夫(George Kingsley Zipf)于1949年发表的实验定律. 它可以表述为: 在 ...

  6. CloudSim4.0报错NoClassDefFoundError,Caused by: java.lang.ClassNotFoundException: org.apache.commons.math3.distribution.UniformRealDistribution

    今天下载了CloudSim 4.0的代码,运行其中自带的示例程序,结果有一部分运行错误: 原因是找不到org.apache.commons.math3.distribution.UniformReal ...

  7. Wishart distribution

    Introduction In statistics, the Wishart distribution is generalization to multiple dimensions of the ...

  8. distribution 中一直在运行 waitfor delay @strdelaytime 语句

    Replication 自动创建来一个 Job:Replication monitoring refresher for distribution,这个Agent执行一个sp: dbo.sp_repl ...

  9. Distribution2:Distribution Writer

    Distribution Writer 调用Statement Delivery 存储过程,将Publication的改变同步到Subscriber中.查看Publication Properties ...

随机推荐

  1. Scala(七)【异常处理】

    目录 一.try-catch-finally 二.Try(表达式).getOrElse(异常出现返回的默认值) 三. 直接抛出异常 一.try-catch-finally 使用场景:在获取外部链接的时 ...

  2. Hive(十)【窗口函数】

    目录 一.定义 窗口函数: 标准聚合函数 分析排名函数 二.语法 (1)窗口函数 over([partition by 字段] [order by 字段] [ 窗口语句]) (2)窗口语句 三.需求练 ...

  3. LR中的快捷建

    Ctrl+F  弹出搜索对话框 CTRL+F8  弹出view tree 界面 (寻找关联) 觉得不错的可关注微信公众号在手机上观看,让你用手机边玩边看

  4. SpringMVC(3):AJAX

    一,AJAX 简介 AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML) AJAX 不是新的编程语言,而是一种使用现有标准的新方法 ...

  5. Spring是如何保证同一事务获取同一个Connection的?使用Spring的事务同步机制解决:数据库刚插入的记录却查询不到的问题(转)

    前言 关于Spring的事务,它是Spring Framework中极其重要的一块.前面用了大量的篇幅从应用层面.原理层面进行了比较全方位的一个讲解.但是因为它过于重要,所以本文继续做补充内容:Spr ...

  6. Quartz使用AutoFac依赖注入问题小结

    theme: channing-cyan highlight: a11y-dark 背景 最近在做一个需求,就是在Job中捕捉异常,然后通过邮件或者消息的方式推送给指定人员,在需求实现的过程中遇到的一 ...

  7. ICCV2021 | 用于视觉跟踪的学习时空型transformer

    ​  前言  本文介绍了一个端到端的用于视觉跟踪的transformer模型,它能够捕获视频序列中空间和时间信息的全局特征依赖关系.在五个具有挑战性的短期和长期基准上实现了SOTA性能,具有实时性,比 ...

  8. SQL->Python->PySpark计算KS,AUC及PSI

    KS,AUC 和 PSI 是风控算法中最常计算的几个指标,本文记录了多种工具计算这些指标的方法. 生成本文的测试数据: import pandas as pd import numpy as np i ...

  9. layout_weight属性分析

    最近写Demo,突然发现了Layout_weight这个属性,发现网上有很多关于这个属性的有意思的讨论,可是找了好多资料都没有找到一个能够说的清楚的,于是自己结合网上资料研究了一下,终于迎刃而解,写出 ...

  10. Wireshark(二):应用Wireshark观察基本网络协议

    原文出处: EMC中文支持论坛 TCP: TCP/IP通过三次握手建立一个连接.这一过程中的三种报文是:SYN,SYN/ACK,ACK. 第一步是找到PC发送到网络服务器的第一个SYN报文,这标识了T ...