Gumbel distribution
概
感觉这个分布的含义很有用啊, 能预测‘最大', 也就是自然灾害, 太牛了.
主要内容
定义
[Gumbel distribution-wiki](Gumbel distribution - Wikipedia)
其分布函数和概率密度函数分别为:
\]
标准Gumbel分布(即\(\mu=0, \beta=1\)):
\]
从Gumbel分布中采样, 只需:
\]
proof:
\]
故\(F^{-1}(u)\)的分布函数就是\(F(x)\).
\]
其中 \(\gamma\)是Euler-Mascherorni constant.
Gumbel-Max trick
假设我们有一个离散的分布\([\pi_1, \pi_2, \cdots, \pi_k]\)共\(k\)类, \(\pi_i\)表示为第\(i\)类的概率, 则从该分布中采样\(z\)等价于
\]
proof:
\]
又
\]
带入计算得:
P(z=i)
& = \int_{-\infty}^{+\infty} e^{-(x+e^{-x} \cdot \frac{1}{\pi_i})} \mathrm{d}x \\
& = \int_{-\infty}^{+\infty} \pi_i \cdot e^{-[(x-\log\frac{1}{\pi_i})+e^{-(x - \log \frac{1}{\pi_i})}]} \mathrm{d}x \\
& = \pi_i.
\end{array}
\]
Gumbel trick 用于归一化
我们时常会碰到这样的问题:
\]
其中\(Z=\sum_{i=1}^K f(x_i;\theta)\) 是归一化常数, 那么怎么计算\(Z\)呢?
构建随机变量\(T\):
\]
则
\]
proof:
\]
因为
\]
故我们只需估计\(\mathbb{E}[T] \approx \sum_j T_j\) 即可估计\(Z\)
\]
所以必须要求离散的\(x\)?
代码
[scipy-gumbel](scipy.stats.gumbel_r — SciPy v1.6.3 Reference Guide)
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gumbel_r
fig, ax = plt.subplots(1, 1)
# mean, var, skew, kurt = gumbel_r.stats(moments='mvsk')
# print(mean, var, skew, kurt)
x = np.linspace(gumbel_r.ppf(0.01), gumbel_r.ppf(0.99), 100)
ax.plot(x, gumbel_r.pdf(x), 'r-', lw=5, alpha=0.6, label="gumbel_r pdf")
r = gumbel_r.rvs(size=1000, loc=0, scale=1)
ax.hist(r, density=True, histtype="stepfilled", alpha=0.2)
ax.legend(loc='best', frameon=False)
plt.show()

Gumbel distribution的更多相关文章
- Gumbel-Softmax Trick和Gumbel分布
之前看MADDPG论文的时候,作者提到在离散的信息交流环境中,使用了Gumbel-Softmax estimator.于是去搜了一下,发现该技巧应用甚广,如深度学习中的各种GAN.强化学习中的A2 ...
- (数据科学学习手札03)Python与R在随机数生成上的异同
随机数的使用是很多算法的关键步骤,例如蒙特卡洛法.遗传算法中的轮盘赌法的过程,因此对于任意一种语言,掌握其各类型随机数生成的方法至关重要,Python与R在随机数底层生成上都依靠梅森旋转(twiste ...
- Python中生成随机数
目录 1. random模块 1.1 设置随机种子 1.2 random模块中的方法 1.3 使用:生成整形随机数 1.3 使用:生成序列随机数 1.4 使用:生成随机实值分布 2. numpy.ra ...
- Categorical Reparameterization with Gumbel-Softmax
目录 概 主要内容 Gumbel distribution Jang E., Gu S. and Poole B. Categorical reparameterization with gumbel ...
- 齐夫定律, Zipf's law,Zipfian distribution
齐夫定律(英语:Zipf's law,IPA英语发音:/ˈzɪf/)是由哈佛大学的语言学家乔治·金斯利·齐夫(George Kingsley Zipf)于1949年发表的实验定律. 它可以表述为: 在 ...
- CloudSim4.0报错NoClassDefFoundError,Caused by: java.lang.ClassNotFoundException: org.apache.commons.math3.distribution.UniformRealDistribution
今天下载了CloudSim 4.0的代码,运行其中自带的示例程序,结果有一部分运行错误: 原因是找不到org.apache.commons.math3.distribution.UniformReal ...
- Wishart distribution
Introduction In statistics, the Wishart distribution is generalization to multiple dimensions of the ...
- distribution 中一直在运行 waitfor delay @strdelaytime 语句
Replication 自动创建来一个 Job:Replication monitoring refresher for distribution,这个Agent执行一个sp: dbo.sp_repl ...
- Distribution2:Distribution Writer
Distribution Writer 调用Statement Delivery 存储过程,将Publication的改变同步到Subscriber中.查看Publication Properties ...
随机推荐
- Scala(七)【异常处理】
目录 一.try-catch-finally 二.Try(表达式).getOrElse(异常出现返回的默认值) 三. 直接抛出异常 一.try-catch-finally 使用场景:在获取外部链接的时 ...
- Hive(十)【窗口函数】
目录 一.定义 窗口函数: 标准聚合函数 分析排名函数 二.语法 (1)窗口函数 over([partition by 字段] [order by 字段] [ 窗口语句]) (2)窗口语句 三.需求练 ...
- LR中的快捷建
Ctrl+F 弹出搜索对话框 CTRL+F8 弹出view tree 界面 (寻找关联) 觉得不错的可关注微信公众号在手机上观看,让你用手机边玩边看
- SpringMVC(3):AJAX
一,AJAX 简介 AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML) AJAX 不是新的编程语言,而是一种使用现有标准的新方法 ...
- Spring是如何保证同一事务获取同一个Connection的?使用Spring的事务同步机制解决:数据库刚插入的记录却查询不到的问题(转)
前言 关于Spring的事务,它是Spring Framework中极其重要的一块.前面用了大量的篇幅从应用层面.原理层面进行了比较全方位的一个讲解.但是因为它过于重要,所以本文继续做补充内容:Spr ...
- Quartz使用AutoFac依赖注入问题小结
theme: channing-cyan highlight: a11y-dark 背景 最近在做一个需求,就是在Job中捕捉异常,然后通过邮件或者消息的方式推送给指定人员,在需求实现的过程中遇到的一 ...
- ICCV2021 | 用于视觉跟踪的学习时空型transformer
前言 本文介绍了一个端到端的用于视觉跟踪的transformer模型,它能够捕获视频序列中空间和时间信息的全局特征依赖关系.在五个具有挑战性的短期和长期基准上实现了SOTA性能,具有实时性,比 ...
- SQL->Python->PySpark计算KS,AUC及PSI
KS,AUC 和 PSI 是风控算法中最常计算的几个指标,本文记录了多种工具计算这些指标的方法. 生成本文的测试数据: import pandas as pd import numpy as np i ...
- layout_weight属性分析
最近写Demo,突然发现了Layout_weight这个属性,发现网上有很多关于这个属性的有意思的讨论,可是找了好多资料都没有找到一个能够说的清楚的,于是自己结合网上资料研究了一下,终于迎刃而解,写出 ...
- Wireshark(二):应用Wireshark观察基本网络协议
原文出处: EMC中文支持论坛 TCP: TCP/IP通过三次握手建立一个连接.这一过程中的三种报文是:SYN,SYN/ACK,ACK. 第一步是找到PC发送到网络服务器的第一个SYN报文,这标识了T ...