写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下:

F(0) = 0,   F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1:

输入:n = 2
输出:1

class Solution {
public:
int fib(int n) {
long tmp=1e9+7;
if(n==0) return 0;
else if(n==1) return 1;
else{
int tt1=0,tt2=1,tt3=1;
for(int i=2;i<=n;++i){
tt3=(tt1+tt2)%tmp;
tt1=tt2;
tt2=tt3;
}
return tt3;
}
}
};

剑指 Offer 10- I. 斐波那契数列的更多相关文章

  1. 剑指offer七之斐波那契数列

    一.题目 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.n<=39. 二.思路 序号:                  0  1   2   3  4   5  ...

  2. 剑指offer 07:斐波那契数列

    题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).(n<=39) 法一: public class Solution { publi ...

  3. 【剑指 Offer】10-I.斐波那契数列

    题目描述 写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项.斐波那契数列的定义如下: F(0) = 0,   F(1) = 1 F(N) = F(N - 1) + F(N - ...

  4. 【剑指Offer】10- I. 斐波那契数列 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 个人微信公众号:负雪明烛 目录 题目描述 解题方法 递归 动态规划 日期 题目地址:htt ...

  5. 剑指offer-面试题9.斐波拉契数列

    题目一:写一个函数,输入n,求斐波拉契数列的第n项. 斐波拉契数列的定义如下: { n=; f(n)={ n=; { f(n-)+f(n-) n>; 斐波拉契问题很明显我们会想到用递归来解决: ...

  6. 剑指offer-矩形覆盖-斐波那契数列(递归,递推)

    class Solution { public: int rectCover(int number) { if(number==0 || number==1||number==2) return nu ...

  7. 剑指offer——面试题10:斐波那契数列

    个人答案: #include"iostream" #include"stdio.h" #include"string.h" using na ...

  8. 剑指offer第二版面试题10:斐波那契数列(JAVA版)

    题目:写一个函数,输入n,求斐波那契数列的第n项.斐波那契数列的定义如下: 1.效率很低效的解法,挑剔的面试官不会喜欢 使用递归实现: public class Fibonacci { public ...

  9. 剑指offer 面试题10:斐波那契数列

    题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).n<=39 编程思想 知道斐波拉契数列的规律即可. 编程实现 class Solu ...

  10. 【剑指offer】10A--求裴波那切数列的第n项,C++实现

    #本文是牛客网<剑指offer>刷题笔记 1.题目 写入一个函数,输入n,输出裴波那切数列的第n项 2.思路 递归--时间和空间复杂度高 循环--时间和空间复杂度低,通过循环迭代计算第n项 ...

随机推荐

  1. Linux 内核网桥源码分析

    Linux网桥源码的实现 转自: Linux二层网络协议 Linux网桥源码的实现 1.调用 在src/net/core/dev.c的软中断函数static void net_rx_action(st ...

  2. SpringCloud微服务实战——搭建企业级开发框架(十四):集成Sentinel高可用流量管理框架【限流】

      Sentinel 是面向分布式服务架构的高可用流量防护组件,主要以流量为切入点,从限流.流量整形.熔断降级.系统负载保护.热点防护等多个维度来帮助开发者保障微服务的稳定性. Sentinel 具有 ...

  3. Kubernetes Deployment 源码分析(二)

    概述startDeploymentController 入口逻辑DeploymentController 对象DeploymentController 类型定义DeploymentController ...

  4. 全面!总结BQ系列阻抗跟踪电量计化学Chemical ID配置和Golden学习方法

    BQ系列阻抗跟踪电量计SOC最高能达到1%,功能强大,应用起来也比较复杂.不仅要配置好参数,匹配好化学ID,并且进行好Golden学习和相关测试.本文就讲述ID匹配,Golden学习和测试的终极方法流 ...

  5. Python之模块导入(不看会后悔系列)

    看到这个标题猜想大家内心OS: 什么辣鸡水文,划走划走~ 别急有干货! 静态导入(照顾新人) 假设现在有两个文件a,b在不同目录,b文件想引用a文件中的函数: # test_module/sub_mo ...

  6. The 'stream().forEach()' chain can be replaced with 'forEach()' (may change semantics)

    对集合操作时,因不同的写法Idea经常会提示:The 'stream().forEach()' chain can be replaced with 'forEach()' (may change s ...

  7. 南大《软件分析》课程笔记——Intermediate Representation

    南大<软件分析>--Intermediate Representation @(静态分析) Content 编译器和静态分析的关系 AST vs IR IR:3-地址代码(3AC) 实际静 ...

  8. 南京大学OS笔记(1)-应用眼中的操作系统

    南京大学OS笔记(1)-应用眼中的操作系统 早就想刷一刷南大JYY老师的os课.之前稍微看过几节,果然讲的风趣幽默,而且现场写代码展示水平确实很高,这次准备认真刷一刷然后好好记一下笔记.当然lab就不 ...

  9. FZU ICPC 2020 寒假训练 5 —— 排序

    P1177 [模板]快速排序 题目描述 利用快速排序算法将读入的 N 个数从小到大排序后输出.快速排序是信息学竞赛的必备算法之一.对于快速排序不是很了解的同学可以自行上网查询相关资料,掌握后独立完成. ...

  10. Linux基础四:软件包管理

    四.软件包管理器: 1.概念 红帽有两款软件包管理器,分别是rpm和yum. 1.rpm软件包管理器  ->  用来安装单个包  ->  .rpm文件 红帽的安装包文件,都放在Packag ...