A*B Problem

描述

设计一个程序求出A*B,然后将其结果每一位相加得到C,如果C的位数大于等于2,继续将C的各位数相加,直到结果是个一位数k。

例如:

6*8=48;

4+8=12;

1+2=3;

输出3即可。

输入
第一行输入一个数N(0<N<=1000000),表示N组测试数据。
随后的N行每行给出两个非负整数m,n(0<=m,n<=10^12)。
输出
对于每一行数据,输出k。
样例输入
3
6 8
1234567 67
454 1232
样例输出
3
4
5

这道题目和之前的 http://www.cnblogs.com/liugl7/p/5362552.html 很像,在那道题中就总结了一个规律,就是:一个大数对9取余等于这个数各位数字之和对9取余。现在根据这个题目的意思,是反过来了。题目中说,这个数的各个位的数字之和一直处理到个位数。  我们经过演算可以得知计算“一个数W=mn的这样的运算”的结果可以用(W-1)%9+1直接得到。

而 mn-1 = (m-1 +1)(n-1 +1)-1 = (m-1)(n-1)+(m-1) + (n-1)+1 - 1 = (m-1)(n-1)+(m-1) + (n-1)

所以(mn-1)%9 = [(m-1)(n-1)+(m-1) + (n-1) ]%9 = [(m-1)(n-1)%9+(m-1)%9 + (n-1)%9]%9= { [(m-1)%9+1] * [(n-1)%9+1]  -1   }%9

即 结果A=  (mn-1)%9 +1 =  { [(m-1)%9+1] * [(n-1)%9+1]  -1   }%9 +1

  这样就把m和n的位数降下来了,可以直接输入m、n然后对9取模; 如果遇到了long long 存不下的数,可以运用http://www.cnblogs.com/liugl7/p/5362552.html 中的处理方法,充分运用10X≡9X+X≡X(mod 9)来完成 m%9和n%9的运算。

AC代码如下:

 #include<stdio.h>
int main(){
long long m,n;
int temp,ans,t;
scanf("%d",&t);
while(t--){
scanf("%lld%lld",&m,&n);
temp = ( (m-)% +) * ( (n-)%+);
ans = (temp-)% +;
printf("%d\n",ans);
}
return ; }

不过需要mark的是“9余数定理”这个东西,【一个数的各位数字之和想加后得到的<10的数字称为这个数的九余数(如果相加结果大于9,则继续各位相加)】9余数定理的其中一条有:两个因数的九余数相乘,所得的数的九余数应当等于两个因数的乘积的九余数。关于这个“9余数”,还有一个比较好玩的应用是计算“从1到1024排成一个数除以9,余数是多少?”  http://www.zhihu.com/question/26033918

这里面充分应用了10X≡9X+X≡X(mod 9)这个性质,顺带手还有9余数定理的体现。

经过本题,我们可以发现  计算一个数W的9余数的公式是  (W-1)%9+1   ,看到这的都是真爱啊,那么,不妨心中怀着这个公式从头再来一遍吧,相信这遍,会更清晰。

NYOJ 485的更多相关文章

  1. NYOJ 1007

    在博客NYOJ 998 中已经写过计算欧拉函数的三种方法,这里不再赘述. 本题也是对欧拉函数的应用的考查,不过考查了另外一个数论基本定理:如何用欧拉函数求小于n且与n互质所有的正整数的和. 记eule ...

  2. NYOJ 998

    这道题是欧拉函数的使用,这里简要介绍下欧拉函数. 欧拉函数定义为:对于正整数n,欧拉函数是指不超过n且与n互质的正整数的个数. 欧拉函数的性质:1.设n = p1a1p2a2p3a3p4a4...pk ...

  3. NYOJ 333

    http://www.cppblog.com/RyanWang/archive/2009/07/19/90512.aspx?opt=admin 欧拉函数 E(x)表示比x小的且与x互质的正整数的个数. ...

  4. NYOJ 99单词拼接(有向图的欧拉(回)路)

    /* NYOJ 99单词拼接: 思路:欧拉回路或者欧拉路的搜索! 注意:是有向图的!不要当成无向图,否则在在搜索之前的判断中因为判断有无导致不必要的搜索,以致TLE! 有向图的欧拉路:abs(In[i ...

  5. nyoj 10 skiing 搜索+动归

    整整两天了,都打不开网页,是不是我提交的次数太多了? nyoj 10: #include<stdio.h> #include<string.h> ][],b[][]; int ...

  6. 简答哈希实现 (nyoj 138 找球号2)

    例题链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=138 代码目的:复习哈希用 代码实现: #include "stdio.h&qu ...

  7. nyoj 284 坦克大战 简单搜索

    题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=284 题意:在一个给定图中,铁墙,河流不可走,砖墙走的话,多花费时间1,问从起点到终点至少 ...

  8. nyoj 170 网络的可靠性

    题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=170 思路:统计每个节点的度,将度为1的节点消去所需要的最少的边即为答案. 代码: #in ...

  9. nyoj 139 我排第几个--康拓展开

    我排第几个 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 现在有"abcdefghijkl”12个字符,将其所有的排列中按字典序排列,给出任意一种排列,说 ...

随机推荐

  1. Git 获取文件操作

    1. 在本地新建存放源代码的文件夹: 2. 进入文件夹下,右击选择 Git Bash Here ,弹出git命令行窗口: 3. 运行指定 git init,初始化git: 4. git  remote ...

  2. github如何查看提交历史呢

    git日志的查看,在使用 Git 提交了若干更新之后,又或者克隆了某个项目,想回顾下提交历史,我们可以使用 git log 命令查看....... 一.查看日志信息: $ git log 可以用 -- ...

  3. WNMP集成环境下配置thinkPHP

    在网上查了许多解决方法,下面是自己测试过能行的方法,只需在nginx.conf文件添加内容就可以了. 打开nginx.conf文件 ## Try the requested URI as files ...

  4. entityframework学习笔记--005-给code first一个正确的解释

    在微软官方关于ef7的介绍中强调,ef7将舍弃database first.model first,只保留code first的使用.这引起了很多人的担忧,担忧源自对code first的错误理解.因 ...

  5. 线程.FTP.SFTP.打包

    Windows就是多线程模式.每一个解决方案就是一个进程.一个进程下拥有多个线程. 简单点.单核的处理器不存在多线程.是CPU在每一个线程上切换处理.在人反应不过来的情况下完成同步的效果. 比如左手画 ...

  6. 咱小谈CLR

    1.什么是CLR CLR(Common Language Runtime)公共语言远行时,是一个可由多种编程语言使用的“远行时”.CLR的核心功能(比如内存管理.程序集加载.安全性.异常处理和线程同步 ...

  7. OData V4 系列 查询操作

    OData 学习目录 对OData的操作,主要是查询,下面把相关的查询情况列出来,供参考学习,每个操作都有对应的截图,便于理解 默认查询 $expand  查询导航属性关系 ,查询Product相关的 ...

  8. jQuery静态方法parseXML使用和源码分析

    jQuery.parseXML( data ) 接受一个格式良好的 XML 字符串,返回解析后的 XML 文档. 方法 jQuery.parseXML() 使用浏览器原生的 XML 解析函数实现. 在 ...

  9. ArcSDE安装注意事项(二)

    上次安装的arcsde9.3后尝试往本机sde数据库中导入一个区局的数据库,但是每次都是导到一半就卡死不动,也没有报任何的错误,因此安装了arcsde9.3 sp2补丁,安装补丁后连接sde(非直连方 ...

  10. infopath重复表格无法保存输入内容

    现象: infopath重复表格无法保存文本输入内容,可以保存日期控件输入内容 原因: 在重复表中添加格式类型规则导致无法保存.