AQS实现原理
AQS实现原理
AQS中维护了一个volatile int state(共享资源)和一个CLH队列。当state=1时代表当前对象锁已经被占用,其他线程来加锁时则会失败,失败的线程被放入一个FIFO的等待队列中,然后会被UNSAFE.park()操作挂起,等待已经获得锁的线程释放锁才能被唤醒。
我们拿具体场景来分析,假设同时有三个线程并发抢占锁,此时线程一抢占成功,线程二、三抢占失败,具体流程如下:

此时AQS内部数据结构为:

上图可以看到等待队列中的节点Node是一个双向链表,这里SIGNAL是Node中waitStatus属性。
以非公平锁看下具体实现:
java.util.concurrent.locks.ReentrantLock.NonfairSync:
static final class NonfairSync extends Sync {
        final void lock() {
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        }
        protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }
    }
线程进来直接利用CAS尝试抢占锁,如果抢占成功state值会被修改为1,且设置对象独占锁线程为当前线程。
线程抢占实现
线程二抢占失败,执行acquire(1)方法。
java.util.concurrent.locks.AbstractQueuedSynchronizer.acquire():
public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
}
tryAcquire是AbstractQueuedSynchronizer的方法,未提供对应实现,由子类实现:
java.util.concurrent.locks.ReentrantLock .nonfairTryAcquire():
final boolean nonfairTryAcquire(int acquires) {
    final Thread current = Thread.currentThread();
    int c = getState();
    if (c == 0) {
        if (compareAndSetState(0, acquires)) {
            setExclusiveOwnerThread(current);
            return true;
        }
    }
    else if (current == getExclusiveOwnerThread()) {
        int nextc = c + acquires;
        if (nextc < 0)
            throw new Error("Maximum lock count exceeded");
        setState(nextc);
        return true;
    }
    return false;
}
nonfairTryAcquire()方法中首先会获取state的值,如果不为0则说明当前对象的锁已经被其他线程占有,接着判断占有锁的线程是否为当前线程,如果是则累加state值,这里其实就是可重入锁的具体实现。如果state为0,则执行CAS操作,尝试更新state值为1,如果更新成功则代表当前线程加锁成功。
当前线程二执行tryAcquire()后返回false,接着执行addWaiter(Node.EXCLUSIVE)逻辑,将自己加入到一个FIFO等待队列中,代码实现如下:
java.util.concurrent.locks.AbstractQueuedSynchronizer.addWaiter():
private Node addWaiter(Node mode) {
    Node node = new Node(Thread.currentThread(), mode);
    Node pred = tail;
    if (pred != null) {
        node.prev = pred;
        if (compareAndSetTail(pred, node)) {
            pred.next = node;
            return node;
        }
    }
    enq(node);
    return node;
}
此时队列中tail指针为空,直接调用enq(node)方法将当前线程加入等待队列尾部:
private Node enq(final Node node) {
    for (;;) {
        Node t = tail;
        if (t == null) {
            if (compareAndSetHead(new Node()))
                tail = head;
        } else {
            node.prev = t;
            if (compareAndSetTail(t, node)) {
                t.next = node;
                return t;
            }
        }
    }
}
第一次循环时tail为空,创建一个哨兵节点,head指向这个哨兵节点;第二次循环,将线程二对应的node节点挂载到head节点后面并返回当前线程创建的节点信息。继续往后执行acquireQueued(addWaiter(Node.EXCLUSIVE), arg)逻辑,此时传入的参数为线程二对应的node节点信息。
java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireQueued():
final boolean acquireQueued(final Node node, int arg) {
    boolean failed = true;
    try {
        boolean interrupted = false;
        for (;;) {
            final Node p = node.predecessor();
            if (p == head && tryAcquire(arg)) {
                setHead(node);
                p.next = null; // help GC
                failed = false;
                return interrupted;
            }
            if (shouldParkAfterFailedAcquire(p, node) &&
                parkAndChecknIterrupt())
                interrupted = true;
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
}
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
    int ws = pred.waitStatus;
    if (ws == Node.SIGNAL)
        return true;
    if (ws > 0) {
        do {
            node.prev = pred = pred.prev;
        } while (pred.waitStatus > 0);
        pred.next = node;
    } else {
        compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
    }
    return false;
}
private final boolean parkAndCheckInterrupt() {
    LockSupport.park(this);
    return Thread.interrupted();
}
acquireQueued()会先判断当前传入的Node对应的前置节点是否为head,如果是则尝试加锁。加锁成功则将当前节点设置为head节点,然后删除之前的head节点。
如果加锁失败或者Node的前置节点不是head节点,就会通过shouldParkAfterFailedAcquire方法将head节点的waitStatus变成SIGNAL=-1,最后执行parkAndChecknIterrupt方法,调用LockSupport.park()挂起当前线程。此时线程二需要等待其他线程释放锁来唤醒。
线程释放实现
线程一执行完后释放锁,具体代码如下:
java.util.concurrent.locks.AbstractQueuedSynchronizer.release():
public final boolean release(int arg) {
    if (tryRelease(arg)) {
        Node h = head;
        if (h != null && h.waitStatus != 0)
            unparkSuccessor(h);
        return true;
    }
    return false;
}
先执行tryRelease方法,如果执行成功,则继续判断head节点的waitStatus是否为0,这个值为SIGNAL=-1不为0,继续执行unparkSuccessor()方法唤醒head的后置节点。
ReentrantLock.tryRelease():
protected final boolean tryRelease(int releases) {
    int c = getState() - releases;
    if (Thread.currentThread() != getExclusiveOwnerThread())
        throw new IllegalMonitorStateException();
    boolean free = false;
    if (c == 0) {
        free = true;
        setExclusiveOwnerThread(null);
    }
    setState(c);
    return free;
}
执行完ReentrantLock.tryRelease()后,state被设置为0,Lock对象的独占锁被设置为null。
接着执行java.util.concurrent.locks.AbstractQueuedSynchronizer.unparkSuccessor()方法,唤醒head的后置节点:
private void unparkSuccessor(Node node) {
    int ws = node.waitStatus;
    if (ws < 0)
        compareAndSetWaitStatus(node, ws, 0);
    Node s = node.next;
    if (s == null || s.waitStatus > 0) {
        s = null;
        for (Node t = tail; t != null && t != node; t = t.prev)
            if (t.waitStatus <= 0)
                s = t;
    }
    if (s != null)
        LockSupport.unpark(s.thread);
}
这里主要是将head节点的waitStatus设置为0,然后解除head节点next的指向,使head几点空置,等待被垃圾回收。
此时重新将head指针指向线程二对应的Node节点,且使用LockSupport.unpark方法来唤醒线程二。被唤醒的线程会接着尝试获取锁,用CAS指令修改state数据。执行完成后AQS中的数据结构如下:

AQS实现原理的更多相关文章
- 并发编程学习笔记(5)----AbstractQueuedSynchronizer(AQS)原理及使用
		
(一)什么是AQS? 阅读java文档可以知道,AbstractQueuedSynchronizer是实现依赖于先进先出 (FIFO) 等待队列的阻塞锁和相关同步器(信号量.事件,等等)提供一个框架, ...
 - AQS工作原理分析
		
AQS工作原理分析 一.大致介绍1.前面章节讲解了一下CAS,简单讲就是cmpxchg+lock的原子操作:2.而在谈到并发操作里面,我们不得不谈到AQS,JDK的源码里面好多并发的类都是通过Sy ...
 - 扒一扒ReentrantLock以及AQS实现原理
		
提到JAVA加锁,我们通常会想到synchronized关键字或者是Java Concurrent Util(后面简称JCU)包下面的Lock,今天就来扒一扒Lock是如何实现的,比如我们可以先提出一 ...
 - ReentrantLock 以及 AQS 实现原理
		
什么是可重入锁? ReentrantLock是可重入锁,什么是可重入锁呢?可重入锁就是当前持有该锁的线程能够多次获取该锁,无需等待.可重入锁是如何实现的呢?这要从ReentrantLock ...
 - AQS实现原理分析——ReentrantLock
		
在Java并发包java.util.concurrent中可以看到,不少源码是基于AbstractQueuedSynchronizer(以下简写AQS)这个抽象类,因为它是Java并发包的基础工具类, ...
 - AQS底层原理分析
		
J.U.C 简介 Java.util.concurrent 是在并发编程中比较常用的工具类,里面包含很多用来在并发场景中使用的组件.比如线程池.阻塞队列.计时器.同步器.并发集合等等.并发包的作者是大 ...
 - 多线程(四) AQS底层原理分析
		
J.U.C 简介 Java.util.concurrent 是在并发编程中比较常用的工具类,里面包含很多用来在并发 场景中使用的组件.比如线程池.阻塞队列.计时器.同步器.并发集合等等.并 发包的作者 ...
 - ReentrantLock以及AQS实现原理
		
什么是可重入锁? ReentrantLock是可重入锁,什么是可重入锁呢?可重入锁就是当前持有该锁的线程能够多次获取该锁,无需等待.可重入锁是如何实现的呢?这要从ReentrantLock的一个内部类 ...
 - AQS的原理及源码分析
		
AQS是什么 AQS= volatile修饰的state变量(同步状态) +FIFO队列(CLH改善版的虚拟双向队列,用于阻塞等待唤醒机制) 队列里维护的Node节点主要包含:等待状态waitStat ...
 
随机推荐
- PGSQL数据库里物化视图【materialized view】
			
1.普通视图 数据库中的视图(view)是从一张或多张数据库表查询导出的虚拟表,反映基础表中数据的变化,且本身不存储数据. 2.物化视图[materialized view] 2.1.概念: ...
 - ifix与AB PLC contrologix 5300系列的通讯
			
在最近一个改造项目中,由于先前的4G 平台不稳定,本公司自己组建4G VPN来实现.遇到问题:AB 高版本PLC(1769-L33ER)使用标签名直接代替了地址,ifix的ABR驱动只支持SLC500 ...
 - 免杀mimikatz
			
mimikatz源码 下载地址https://github.com/gentilkiwi/mimikatz/releases/tag/2.2.0-20210709 使用vs2019打开工程mimik ...
 - Tensorflow2对GPU内存的分配策略
			
一.问题源起 从以下的异常堆栈可以看到是BLAS程序集初始化失败,可以看到是执行MatMul的时候发生的异常,基本可以断定可能数据集太大导致memory不够用了. 2021-08-10 16:38:0 ...
 - 深入理解Https如何保证通信安全
			
作为一名ABC搬运工,我相信很多人都知道Https,也都知道它是用来保证通信安全的,但是如果你没有深入了解过Https,可能并不知道它是如何保证通信安全的.我也是借着这次机会,和大家分享下我深入了解的 ...
 - 配置SSH公钥以及创建远程仓库
			
一.配置SSH公钥 1.生成SSH公钥 在我们自己电脑的桌面上右键菜单,打开git命令行,输入以下命令: ssh-keygen -t rsa 一直敲回车之后,显示以下信息即表示成功生成SSH公钥,并且 ...
 - TextLineCodecFactory笔记
			
Mina的TextLineCodecFactory将字符串编码为字节流,将字节流解码为字符串,下面是使用中遇到的两个问题. TextLineCodecFactory改变了message的类型 acce ...
 - uname指令
			
以下是一台Solaris 10服务器的配置信息, bash-3.00$ uname -a SunOS NOP2-HWXX 5.10 Generic_138888-03 sun4u sparc SUNW ...
 - TotalCommander的两款目录插件
			
CatalogMaker 与 DiskDir Extended 是两个用于生成文件夹目录的totalCmd插件. 将指定目录下所有文件.文件夹以指定格式存储在一个文本文件中,可作为EverCD+的轻量 ...
 - Color Theme of Emacs
			
Choose color theme interactively: M-x customize-themes, or M-x color-theme-select (use key "q&q ...