NOIP模拟测试39,思维禁锢专场「工业题·玄学题·卡常题」
工业题
题解
抱歉,题解没时间写了

代码
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define A 6666666
#define mod 998244353
ll jie[A],ni[A],acnt[A],bcnt[A];
ll fheng[A],fshu[A];
ll n,m,a,b;
ll meng(ll x,ll k){
ll ans=1;
for(;k;k>>=1,x=x*x%mod)
if(k&1)
ans=ans*x%mod;
return ans;
}
ll C(ll x,ll y){
return jie[x]*ni[x-y]%mod*ni[y]%mod;
}
int main(){
// freopen("a_sample2.in","r",stdin);
scanf("%lld%lld%lld%lld",&n,&m,&a,&b);
a%=mod,b%=mod;
jie[0]=1;ni[0]=1;
acnt[0]=bcnt[0]=1;
for(ll i=1;i<=n+m;i++)
jie[i]=jie[i-1]*i%mod,acnt[i]=acnt[i-1]*a%mod,bcnt[i]=bcnt[i-1]*b%mod;
ni[n+m]=meng(jie[n+m],mod-2);
for(ll i=n+m-1;i>=1;i--)
ni[i]=ni[i+1]*(i+1)%mod;
for(ll i=1;i<=n;i++)
scanf("%lld",&fheng[i]),fheng[i]%=mod;
for(ll j=1;j<=m;j++)
scanf("%lld",&fshu[j]),fshu[j]%=mod;
ll ans=0;
for(ll i=n;i>=1;i--){
// printf("acnt=%lld bcnt=%lld ")
// printf("fheng[]=%lld n-i+m=%lld m=%lld i=%lld c=%lld acnt=%lld bcnt=%lld\n",fheng[i],n-i+m,m,i,C(n-i+m,m),acnt[m],bcnt[n-i]);
ans=(ans+fheng[i]*((acnt[m]%mod*bcnt[n-i]%mod)%mod)%mod*C(n-i+m-1,m-1)%mod)%mod;
}
for(ll i=1;i<=m;i++){
// printf("fheng[]=%lld n-i+m=%lld m=%lld i=%lld c=%lld acnt=%lld bcnt=%lld\n",fshu[i],n-i+m,m,i,C(n-i+m,m),acnt[m-i],bcnt[n]);
ans=(ans+fshu[i]*((acnt[m-i]%mod*bcnt[n]%mod)%mod)%mod*C(n-i+m-1,n-1)%mod)%mod;
}
printf("%lld\n",ans);
}
玄学题
题解
题目中说求$\sum\limits_{i=1}^{i<=n}(-1)^{\sum\limits_{j=1}^{j<=m} d(i*j)}$ $d$表示约数个数
$(-1)^{\sum\limits_{j=1}^{j<=m} d(i*j)}$只和奇偶性有关,如果$d(i*j)$为偶数,那么它是没用,偶+偶=偶,偶+奇=奇
那么只考虑约数个数为奇就可以了,发现约数个数为奇当且仅当为完全平方数
我们把$i$ 拆成 $p*q^2$($p$ 没有平方因子),那 $j$ 必须有 $p*r^2$ 的形式,所以对于每个 $i$,都有 $sqrt(\frac{m}{p})$ 个 $j$ 产生贡献。
可以埃筛(需要卡常)可以线筛
我用的埃筛
代码
#include<bits/stdc++.h>
using namespace std;
#define ll int
#define A 11111111
long long m,n,ans;
ll a[A];
int main(){
scanf("%lld%lld",&n,&m);
for(ll i=1;i<=n;i++)
a[i]=i;
ll haha=sqrt(n);
for(ll i=haha;i>=2;i--){
ll now=i*i;
for(ll j=now;j<=n;j+=now){
while(a[j]%now==0)
a[j]/=now;
}
}
for(ll i=1;i<=n;i++){
long long now=m/a[i];
now=sqrt(now);
if(now&1) ans--;
else ans++;
}
printf("%lld\n",ans);
}
卡常题
题解
代码
考试经历
$t1$沉迷打表
范围很大,我觉得可能是$n+m$的
我总觉得$f[n][m]$可拆,拆成$w1*(?*a*?*b)*f[n][0]+w2*(?*a*?*b)f[n-1][0]+.......w.*(?*a*?*b)f[0][m]$
$?$很简单,可以推出来$a$,$b$系数,然后我就开始推总体系数$w$
然后我就打了$75$分钟表,
当然也有一丁点收获
1
1 2
1 3 6
1 4 10 20
1 5 15 35 70
1 6 21 56 126 252
1 7 28 84 210 462 924
$update$
这个表就是组合数表,呵呵.终于认清自己傻逼本质
一直到$20$行我只截取了7行
然而并没有什么卵用,
这个式子屁用没有
然后开始想$t2$
$t2$让我想起了
God Knows
然后我开始想$区间dp$
然后我想了很长时间,依然没有任何收获
转移起来跟.一样
然后看$t3$,
NOIP模拟测试39,思维禁锢专场「工业题·玄学题·卡常题」的更多相关文章
- 「题解」NOIP模拟测试题解乱写II(36)
毕竟考得太频繁了于是不可能每次考试都写题解.(我解释个什么劲啊又没有人看) 甚至有的题目都没有改掉.跑过来写题解一方面是总结,另一方面也是放松了. NOIP模拟测试36 T1字符 这题我完全懵逼了.就 ...
- 2019.8.3 [HZOI]NOIP模拟测试12 C. 分组
2019.8.3 [HZOI]NOIP模拟测试12 C. 分组 全场比赛题解:https://pan.baidu.com/s/1eSAMuXk 刚看这题觉得很难,于是数据点分治 k只有1和2两种,分别 ...
- 2019.8.3 [HZOI]NOIP模拟测试12 B. 数颜色
2019.8.3 [HZOI]NOIP模拟测试12 B. 数颜色 全场比赛题解:https://pan.baidu.com/s/1eSAMuXk 数据结构学傻的做法: 对每种颜色开动态开点线段树直接维 ...
- 2019.8.3 [HZOI]NOIP模拟测试12 A. 斐波那契(fibonacci)
2019.8.3 [HZOI]NOIP模拟测试12 A. 斐波那契(fibonacci) 全场比赛题解:https://pan.baidu.com/s/1eSAMuXk 找规律 找两个节点的lca,需 ...
- NOIP模拟测试17&18
NOIP模拟测试17&18 17-T1 给定一个序列,选取其中一个闭区间,使得其中每个元素可以在重新排列后成为一个等比数列的子序列,问区间最长是? 特判比值为1的情况,预处理比值2~1000的 ...
- [NOIP模拟测试30]题解
A.Return 出题人大概是怕自己的中文十级没人知道,所以写了这么一个***题面.可能又觉得这题太水怕全场A掉后自己面子过不去,于是又故意把输出格式说的含糊不清.(鬼知道"那么输出-1&q ...
- 「题解」NOIP模拟测试题解乱写I(29-31)
NOIP模拟29(B) T1爬山 简单题,赛时找到了$O(1)$查询的规律于是切了. 从倍增LCA那里借鉴了一点东西:先将a.b抬到同一高度,然后再一起往上爬.所用的步数$×2$就是了. 抬升到同一高 ...
- NOIP模拟测试19「count·dinner·chess」
反思: 我考得最炸的一次 怎么说呢?简单的两个题0分,稍难(我还不敢说难,肯定又有人喷我)42分 前10分钟看T1,不会,觉得不可做,完全不可做,把它跳了 最后10分钟看T1,发现一个有点用的性质,仍 ...
- NOIP模拟测试10「大佬·辣鸡·模板」
大佬 显然假期望 我奇思妙想出了一个式子$f[i]=f[i-1]+\sum\limits_{j=1}^{j<=m} C_{k \times j}^{k}\times w[j]$ 然后一想不对得容 ...
随机推荐
- java面试一日一题:如何设计一款垃圾回收器
问题:如果让你设计一个垃圾回收器,你会考虑哪些问题 分析:该问题主要考察对java中垃圾回收器的理解,要理解怎么回收:一款好的垃圾回收器有哪些衡量指标 回答要点: 主要从以下几点去考虑, 1.垃圾回收 ...
- Vue3能不能用到生产环境?
最近,有不少朋友问我:"十三,看你写了几个Vue3的项目,你觉得Vue3能用到生产环境了吗?"结合自己的想法和尤大直播说的话,给一点建议. 别问我!没结果,除非花手摇过我. 我不是 ...
- Dom树,什么是dom树?
相信很多初学前端的小伙伴,学了html,css,js之后,欣喜之余还有一丝小傲娇,没有想到那些大佬们口中又 提到了DOM树.你两眼一抹黑,年轻人总是要接受社会的爱(du)护(da). DOM 是 Do ...
- Zoho:SaaS行业的“紫色奶牛”
以下文章来源于:中国软件网,作者王锦宝 蓝天白云的映衬下,一群黑白相间的奶牛在绿草场自由玩耍,这种田园牧歌场景看久了,总会引起审美疲劳.假如突然出现一头紫色奶牛,你肯定会眼前一亮,把所有注意力集中到紫 ...
- 【转载】Python 代码调试技巧
https://www.ibm.com/developerworks/cn/linux/l-cn-pythondebugger/ Python 代码调试技巧 张 颖2012 年 5 月 03 日发布 ...
- S3待机 S4休眠
https://hceng.cn/2018/01/18/Linux%E7%94%B5%E6%BA%90%E7%AE%A1%E7%90%86/ 1.1系统睡眠模型Suspend On (on) S0 - ...
- CentOS7开放端口以及常用的使用命令记录整理
CentOS7与以前常用的CentOS6还是有一些不同之处的,比如在设置开放端口的时候稍许有些不同,常用的iptables命令已经被firewalld代替.这几天正好有在CentOS7系统中玩Seaf ...
- 使用 dd 命令进行硬盘 I/O 性能检测
使用 dd 命令进行硬盘 I/O 性能检测 作者: Vivek Gite 译者: LCTT DongShuaike | 2015-08-28 07:30 评论: 1 收藏: 6 如何使用dd命令测 ...
- ubuntu中软件的升级管理-(转自Josh_)
给Ubuntu软件升级命令 sudo apt-get update --更新软件源 sudo apt-get upgrade -更新已经安装的软件 以非root用户更新系统 sudo: sudo是l ...
- IDEA 自定义文件头注释
什么是 IDEA 自定义文件头注释 IDEA 自定义文件头注释指的是创建 Java 类文件时,IDEA 可以自动设置文件头的注释信息,如下: 如何设置 IDEA 自定义文件头注释 打开 File-&g ...