作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/


题目地址:https://leetcode.com/problems/longest-continuous-increasing-subsequence/description/

题目描述

Given an unsorted array of integers, find the length of longest continuous increasing subsequence (subarray).

Example 1:

Input: [1,3,5,4,7]
Output: 3
Explanation: The longest continuous increasing subsequence is [1,3,5], its length is 3.
Even though [1,3,5,7] is also an increasing subsequence, it's not a continuous one where 5 and 7 are separated by 4.

Example 2:

Input: [2,2,2,2,2]
Output: 1
Explanation: The longest continuous increasing subsequence is [2], its length is 1.
Note: Length of the array will not exceed 10,000.

题目大意

找出数组中最长连续递增子序列(子数组)

解题方法

动态规划

直接使用dp作为到某个位置的最长连续子序列。所以,如果当前的值比前一个值大,那么dp应该是前面的一个位置的数值+1,否则当前的值应该是1。另外需要注意的是当输入是空的时候,应该返回0.

class Solution(object):
def findLengthOfLCIS(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if not nums: return 0
N = len(nums)
dp = [1] * N
for i in range(1, N):
if nums[i] > nums[i - 1]:
dp[i] = dp[i - 1] + 1
return max(dp)

空间压缩DP

在上面的做法中看出,每步的结果之和上面一步有关,所以可以优化空间复杂度。

class Solution(object):
def findLengthOfLCIS(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
longest = 0
cur = 0
for i in range(len(nums)):
if i == 0 or nums[i] > nums[i - 1]:
cur += 1
longest = max(longest, cur)
else:
cur = 1
return longest

二刷的时候版本。

class Solution(object):
def findLengthOfLCIS(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if not nums: return 0
N = len(nums)
dp = 1
res = 1
for i in range(1, N):
if nums[i] > nums[i - 1]:
dp += 1
res = max(res, dp)
else:
dp = 1
return res

日期

2018 年 1 月 29 日
2018 年 11 月 19 日 —— 周一又开始了

【LeetCode】674. Longest Continuous Increasing Subsequence 解题报告(Python)的更多相关文章

  1. [LeetCode] 674. Longest Continuous Increasing Subsequence 最长连续递增序列

    Given an unsorted array of integers, find the length of longest continuous increasing subsequence. E ...

  2. LeetCode 674. Longest Continuous Increasing Subsequence (最长连续递增序列)

    Given an unsorted array of integers, find the length of longest continuous increasing subsequence. E ...

  3. [Leetcode]674. Longest Continuous Increasing Subsequence

    Given an unsorted array of integers, find the length of longest continuous increasing subsequence. E ...

  4. LeetCode 674. Longest Continuous Increasing Subsequence最长连续递增序列 (C++/Java)

    题目: Given an unsorted array of integers, find the length of longest continuous increasing subsequenc ...

  5. leetcode300. Longest Increasing Subsequence 最长递增子序列 、674. Longest Continuous Increasing Subsequence

    Longest Increasing Subsequence 最长递增子序列 子序列不是数组中连续的数. dp表达的意思是以i结尾的最长子序列,而不是前i个数字的最长子序列. 初始化是dp所有的都为1 ...

  6. 【Leetcode_easy】674. Longest Continuous Increasing Subsequence

    problem 674. Longest Continuous Increasing Subsequence solution class Solution { public: int findLen ...

  7. [LeetCode&Python] Problem 674. Longest Continuous Increasing Subsequence

    Given an unsorted array of integers, find the length of longest continuousincreasing subsequence (su ...

  8. [LeetCode] 674. Longest Continuous Increasing Subsequence_Easy Dynamic Programming

    Given an unsorted array of integers, find the length of longest continuous increasing subsequence (s ...

  9. 674. Longest Continuous Increasing Subsequence最长连续递增子数组

    [抄题]: Given an unsorted array of integers, find the length of longest continuous increasing subseque ...

随机推荐

  1. git的使用理解(分支合并的使用理解,多人编程的解决方案)

    本文主要记录了对git日常使用的一些理解,主要是对git分支的一些感悟. git强大的版本控制系统,之前也使用过SVN,感觉上git对于多人开发的版本控制更加强大,特别是最近对git分支的使用,更是深 ...

  2. 在Kubernetes上安装MySQL-PXC集群

    官方部署文档地址:https://www.percona.com/doc/kubernetes-operator-for-pxc/kubernetes.html 一.部署方式 示例在k8s集群(至少3 ...

  3. 点击下拉选择触发事件【c#】

    <asp:DropDownList ID="ddlRegionList" runat="server" AutoPostBack="true&q ...

  4. 重学Git(一)

    一.最最最基础操作 # 初始化仓库 git init # 添加文件到暂存区 git add readme.md # 提交 git commit -m 'wrote a readme file' 二.简 ...

  5. Hive(十)【窗口函数】

    目录 一.定义 窗口函数: 标准聚合函数 分析排名函数 二.语法 (1)窗口函数 over([partition by 字段] [order by 字段] [ 窗口语句]) (2)窗口语句 三.需求练 ...

  6. Java Web 实现Mysql 数据库备份与还原

    前段时间某某删库事故付出的惨重代价告诉我们: 数据备份的必要性是企业数据管理极其重要的一项工作. 1. Mysql备份与还原命令 备份命令: mysqldump -h127.0.0.1 -uroot ...

  7. 【Linux】【Commands】文本查看类

    分屏查看命令:more和less more命令: more FILE 特点:翻屏至文件尾部后自动退出: less命令: less FILE head命令: 查看文件的前n行: head [option ...

  8. 【力扣】122. 买卖股票的最佳时机 II

    给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你可以尽可能地完成更多的交易(多次买卖一支股票). 注意:你不能同时参与多笔交易(你必须在再次 ...

  9. NTLM验证过程

    中我们介绍Kerberos认证的整个流程.在允许的环境下,Kerberos是首选的认证方式.在这之前,Windows主要采用另一种认证协议 --NTLM(NT Lan Manager).NTLM使用在 ...

  10. AtCoder Beginner Contest 169 题解

    AtCoder Beginner Contest 169 题解 这场比赛比较简单,证明我没有咕咕咕的时候到了! A - Multiplication 1 没什么好说的,直接读入两个数输出乘积就好了. ...