泛型Binary Search Tree实现,And和STL map比较的经营业绩
问题叙述性说明:
1.binary search tree它是一种二进制树的。对于key值。比当前节点左孩子少大于右子。
2.binary search tree不是自平衡树。所以,当插入数据不是非常随机时候,性能会接近O(N)。N是树中节点数目;
3.理想状态下。时间复杂度是O(lgN), N是树中节点的数目;
4.以下给出一个简单的实现,并比較其和STL map的性能。一样的操作,大约耗时为STL map 的2/3。
代码例如以下:
#ifndef _BINARY_SEARCH_TREE_H_
#define _BINARY_SEARCH_TREE_H_ #include <functional>
#include <algorithm>
#include <iostream>
#include <map> #include "windows.h" template<class T, class V, class Cmp = std::less<T> >
class BinarySearchTree
{
public: // node struct
typedef struct tagBSNode
{
T key;
V value;
tagBSNode* leftNode;
tagBSNode* rightNode; tagBSNode():key(), value(),
leftNode(0),
rightNode(0)
{ } tagBSNode( const T& _key, const V& _value ):key(_key),
value(_value),
leftNode(0),
rightNode(0)
{ } }BSTNode, *pBSTNode; /*
* Constructor
*
*/
BinarySearchTree():m_root(0), m_size(0)
{ } /*
* Copy constructor
*
*/
BinarySearchTree( const BinarySearchTree& rhs )
{
m_root = Clone( rhs.m_root );
m_size = rhs.m_size;
} /*
* Destructor
*
*/
~BinarySearchTree()
{
Clear();
} /*
* assignment operator overload
*
*/
BinarySearchTree& operator = ( const BinarySearchTree& rhs )
{
if( this != &rhs )
{
Clear(); m_root = Clone( rhs.m_root );
m_size = rhs.m_size;
} return *this;
} /*
* Clear all node
*
*/
void Clear()
{
Clear( m_root );
m_size = 0;
} /*
* check whether or not empty
*
*/
bool IsEmpty() const
{
return m_size == 0;
} /*
* Retrieve the number of node in tree
*
*/
size_t Size() const
{
return m_size;
} /*
*
*
*/
size_t GetSize() const // only for test
{
return Size( m_root );
} /*
* Insert key and value pair to tree
*
*/
void Insert( const T& key, const V& value )
{
Insert( m_root, key, value );
} /*
* Delete node from tree for given key
*
*/
void Delete( const T& key )
{
Delete( m_root, key );
} /*
* Find element from tree for given key
*
*/
V* Find( const T& key )
{
pBSTNode node = Find( m_root, key );
if( node )
return &node->value; return 0;
} /*
* Find the the element of max key
*
*/
V* FindMax( T& key )
{
pBSTNode node = FindMax( m_root );
if( node )
{
key = node->key;
return &node->value;
} return 0;
} /*
* Find the the element of min key
*
*/
V* FinMin( T& key )
{
pBSTNode node = FindMin( m_root );
if( node )
{
key = node->key;
return &node->value;
} return 0;
} /*
* inoder traversal
*
*/
void InorderVisitor( void (*visitor)( const T&, const V& ) )
{
InorderVisitor( m_root, visitor );
} /*
* preoder traversal
*
*/
void PreOrderVisitor( void (*visitor)( const T&, const V& ) )
{
PreOrderVisitor( m_root, visitor );
} /*
* postoder traversal
*
*/
void PostOrderVisitor( void (*visitor)( const T&, const V& ) )
{
PostOrderVisitor( m_root, visitor );
} protected: /*
* Implement clone operation
*
*/
pBSTNode Clone( pBSTNode root )
{
if( 0 == root )
return root; pBSTNode node = new BSTNode( root->key, root->value );
node->leftNode = Clone( root->leftNode );
node->rightNode = Clone( root->rightNode ); return node;
} /*
* Implement clear opreation
*
*/
void Clear( pBSTNode& root )
{
if( 0 == root )
return; Clear( root->leftNode );
Clear( root->rightNode ); delete root;
root = 0; } /*
* Retrieve the number of node by way of recursive
*
*/
size_t Size( pBSTNode root ) const
{
if( 0 == root )
return 0; return 1 + Size( root->leftNode ) + Size( root->rightNode );
} /*
* Implement insert operation
*
*/
void Insert( pBSTNode& root,const T& key, const V& value )
{
if( 0 == root )
{
root = new BSTNode( key, value );
m_size++;
} if( root->key < key )
{
Insert( root->rightNode, key, value );
}
else if( root->key > key )
{
Insert( root->leftNode, key, value );
}
} /*
* Implement delete operation
*
*/
void Delete( pBSTNode& root, const T& key )
{
if( 0 == root )
return; if( root->key < key )
{
Delete( root->rightNode, key );
}
else if( root->key > key )
{
Delete( root->leftNode, key );
}
else
{
if( root->leftNode && root->rightNode )
{
pBSTNode minNode = FindMin( root->rightNode );
root->key = minNode->key;
root->value = minNode->value; Delete( root->rightNode, minNode->key );
}
else
{
pBSTNode node = root;
root = root->leftNode ? root->leftNode: root->rightNode; delete node;
node = 0; m_size--; //very important } }
} /*
* Implement find operation
*
*/
pBSTNode Find( pBSTNode root, const T& key )
{
if( 0 == root )
return root; if( root->key < key )
{
return Find( root->rightNode, key );
}
else if( root->key > key )
{
return Find( root->leftNode, key );
}
else
{
return root;
}
} /*
* Find implement no recursive
*
*/
pBSTNode FindUtil( pBSTNode root, const T& key )
{
if( 0 == root )
return root; pBSTNode cur = root;
while( root )
{
cur = root;
if( root->key < key )
{
root = root->rightNode;
}
else if( root->key > key )
{
root = root->leftNode;
}
else
{
break;
}
} if( cur && cur->key == key )
return cur; return 0;
} /*
* Implement find max element operation
*
*/
pBSTNode FindMax( pBSTNode root )
{
if( 0 == root )
return root; while( root->rightNode )
{
root = root->rightNode;
} return root;
} /*
* Implement find min element operation
*
*/
pBSTNode FindMin( pBSTNode root )
{
if( 0 == root )
return root; while( root->leftNode )
{
root = root->leftNode;
} return root;
} /*
* Implement inorder traversal
*
*/
void InorderVisitor( pBSTNode root, void (*visitor)( const T&, const V& ) )
{
if( 0 == root )
return; InorderVisitor( root->leftNode, visitor );
visitor( root->key, root->value );
InorderVisitor( root->rightNode, visitor );
} /*
* Implement preorder traversal
*
*/
void PreOrderVisitor( pBSTNode root, void (*visitor)( const T&, const V& ) )
{
if( 0 == root )
return; visitor( root->key, root->value );
InorderVisitor( root->leftNode, visitor );
InorderVisitor( root->rightNode, visitor );
} /*
* Implement postorder traversal
*
*/
void PostOrderVisitor( pBSTNode root, void (*visitor)( const T&, const V& ) )
{
if( 0 == root )
return; InorderVisitor( root->leftNode, visitor );
InorderVisitor( root->rightNode, visitor );
visitor( root->key, root->value );
} protected: pBSTNode m_root; size_t m_size;
}; /*
* Test STL map
*
*/
void TestSTLMapBST()
{
const int Len = 200000;
//int key[Len];
//int value[Len]; int* key = new int[Len];
int* value = new int[Len]; for( int i = 0; i < Len; i++ )
{
key[i] = i;
value[i] = i;
} std::random_shuffle( key, key + Len );
std::random_shuffle( value, value + Len ); unsigned long start = GetTickCount(); std::map<int, int> treeObj;
for( int i = 0; i < Len; i++ )
{
treeObj.insert( std::make_pair( key[i], value[i] ) );
} size_t count = treeObj.size(); for( int i = 0; i < Len; i++ )
{
std::map<int, int>::iterator iter = treeObj.find( key[i] );
assert( iter != treeObj.end() );
assert( iter->second == value[i] );
} for( int i = 0; i < Len; i++ )
{
if( !(i % 15) )
{
treeObj.erase( key[i] );
std::map<int, int>::iterator iter = treeObj.find( key[i] );
assert( iter == treeObj.end() ); }
} unsigned long interval = GetTickCount() - start;
printf( " STL map consume time is %d \n", interval ); delete [] key;
delete [] value; } /*
* vistior function for output information when traversal tree
*
*/
template<class T, class V>
void Visitor( const T& key, const V& value )
{
std::cout << "key: " << key << "," <<"value: " << value << std::endl;
} /*
* unit test
*
*/
void TestBST()
{
const int Len = 200000;
//int key[Len];
//int value[Len]; int* key = new int[Len];
int* value = new int[Len]; for( int i = 0; i < Len; i++ )
{
key[i] = i;
value[i] = i;
} std::random_shuffle( key, key + Len );
std::random_shuffle( value, value + Len ); unsigned long start = GetTickCount(); BinarySearchTree<int, int> treeObj;
for( int i = 0; i < Len; i++ )
{
treeObj.Insert( key[i], value[i] );
} for( int i = 0; i < Len; i++ )
{
int* val = treeObj.Find( key[i] );
assert( *val == value[i] );
} int minKey = -1;
int* minValue = treeObj.FinMin( minKey );
assert( minKey == 0 ); int maxKey = -1;
int* maxValue = treeObj.FindMax( maxKey );
assert( maxKey == Len - 1 ); size_t size = treeObj.Size();
assert( size == Len ); int flagCount = 0;
for( int i = 0; i < Len; i++ )
{
if( !(i % 15) )
{
treeObj.Delete( i );
int* val = treeObj.Find( i );
assert( !val ); flagCount++;
}
} unsigned long interval = GetTickCount() - start;
printf( " binary search tree consume time is %d \n", interval ); size = treeObj.Size();
size_t count = treeObj.GetSize(); BinarySearchTree<int, int> newTreeObj;
for( int i = 0; i < 10; i++ )
{
newTreeObj.Insert( key[i], value[i] );
} treeObj = newTreeObj;
newTreeObj.Clear(); std::cout<< "begin inorder traversal " << std::endl;
treeObj.InorderVisitor( Visitor<int, int> ); std::cout<< "begin postorder traversal " << std::endl;
treeObj.PostOrderVisitor( Visitor<int, int> ); std::cout<< "begin preorder traversal " << std::endl;
treeObj.PreOrderVisitor( Visitor<int, int> ); treeObj.Clear(); delete [] key;
delete [] value;
} void TestBSTSuite()
{
TestSTLMapBST();
TestBST();
} #endif
泛型Binary Search Tree实现,And和STL map比较的经营业绩的更多相关文章
- [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法
二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...
- 二叉搜索树(Binary Search Tree)(Java实现)
@ 目录 1.二叉搜索树 1.1. 基本概念 1.2.树的节点(BinaryNode) 1.3.构造器和成员变量 1.3.公共方法(public method) 1.4.比较函数 1.5.contai ...
- Leetcode 笔记 99 - Recover Binary Search Tree
题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...
- Leetcode 笔记 98 - Validate Binary Search Tree
题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...
- Leetcode: Convert sorted list to binary search tree (No. 109)
Sept. 22, 2015 学一道算法题, 经常回顾一下. 第二次重温, 决定增加一些图片, 帮助自己记忆. 在网上找他人的资料, 不如自己动手. 把从底向上树的算法搞通俗一些. 先做一个例子: 9 ...
- [LeetCode] Closest Binary Search Tree Value II 最近的二分搜索树的值之二
Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...
- [LeetCode] Closest Binary Search Tree Value 最近的二分搜索树的值
Given a non-empty binary search tree and a target value, find the value in the BST that is closest t ...
- [LeetCode] Verify Preorder Sequence in Binary Search Tree 验证二叉搜索树的先序序列
Given an array of numbers, verify whether it is the correct preorder traversal sequence of a binary ...
- [LeetCode] Lowest Common Ancestor of a Binary Search Tree 二叉搜索树的最小共同父节点
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...
随机推荐
- css怎样使顶端悬浮导航栏不遮住下面一层页面内容
在两个层之间加这个<span class="blank" style="height:20px;"></span>,其中高度可以自己设置 ...
- JAVA的反射机制学习笔记(二)
上次写JAVA的反射机制学习笔记(一)的时候,还是7月22号,这些天就瞎忙活了.自己的步伐全然被打乱了~不能继续被动下去.得又一次找到自己的节奏. 4.获取类的Constructor 通过反射机制得到 ...
- Python Errors and Exceptions
1. python中的try{}catch{} 2. raise exception 3. try...except ... else.. 4. finally块 python中的异常处理的keywo ...
- haproxy配置监控redis主备切换(转)
环境前提: redis sentinel配置,三台主机,且配置运行良好 配置文件中添加: frontend ft_redis bind 0.0.0.0:6379 name re ...
- Mqtt协议IOS移植完1
MQTTClient.h #import <Foundation/Foundation.h> @protocol MQTTDelegate <NSObject> /** * @ ...
- virus.win32.parite.H病毒的查杀方法
virus.win32.parite.H病毒的查杀方法 昨天电脑中了virus.win32.parite.H病毒,搞了2个多小时最终搞定了.以下记录下我的解决方法. 第一步:下载Win32.Parit ...
- Delphi使用大图标编译程序
在Windows Vista. Windows7以上Windows系统中可以支持大图标显示了,但是Delphi编译出来的程序却只能显示32x32的图标,这使Delphi编译的程序看起来很不专业.下面就 ...
- Ubuntu下Chromium源码的编译
一.失败的经历 印象中,谷歌建议Ubuntu建议版本为10.4.但是我找不到出处了,模糊的印象.不知道是不是这样? 1.Ubuntu10.4.3-desktop-amd64 + Virtual Box ...
- 创建android画笔程序的样例(有镜面效果)
先上图: 关键是在检測到手指移动的时候用mPath.quadTo的方法,android sdk解释是: Add a quadratic bezier from the last point, appr ...
- LCS最大公共子序列问题
在生物应用中,经常需要比较两个(或多个)不同生物体的DNA, 例如:某种生物的DNA可能为S1=ACCGGTCGAGTGCGCGGAAGCCGGCCGAA, 另一种生物的DNA可能为S2=GTCGTT ...